IBM Middleware

2016, IBM Corporation

WebSphere Application Server z/0S

WAS traditional _‘_ WAS Liberty
z2/0S z2/0S

Deciding Which to Use
A

The answer may well be “both” ... the intent of this material is to help you understand and weigh the considerations of both against the
needs of your application serving architecture. Utilizing both WAS traditional and Liberty is a pattern that may fit your needs.

1 A

© 2016, IBM Corporation 1

IBM Middleware

2016, IBM Corporation

Hyperhink

_.‘/

Executive Overview

A one-chart summary of the usage considerations presented in the document

Setting Context

Establishingterminology and providing background on the evolution over time of each runtime models

Application Considerations

Exploring the application interface considerations of each runtime model

)
D
- Operational Considerations
)
D

Exploring the runtime operational considerations of each runtime model

Performance Considerations

Exploring the performance profile of each runtime model

Other Information for Consideration

A collection of other information you may find useful when making this decision

z

This chart shows the sections of this presentation. The green arrows to the left are hyperlinks to the starting page for
the section. (When viewing this in screen show mode, or the PDF of the charts. When reading the notes pages the
chart is rendered as an image and the hyperlinks are no longer in effect.)

© 2016, IBM Corporation 2

IBM Middleware

2016, IBM Corporation

Executive Overview

© 2016, IBM Corporation 3

2016, 1BM Corporation IBM Middleware

Executive Summary

Liberty is the newer runtime model and has considerable IBM focus and investment
WAS traditional z/OS continues to be a viable platform with IBM support into future

Liberty z/OS benefits include: smaller memory footprint, greater zIIP offload, more
flexible configuration and application deployment

If there is a business driver to consider moving to Liberty, then:
» Determine the viability of moving the applications to Liberty
* Assessthe operational differences and determine if any value is diminished by moving
» Jf walue dz cost, then it's a net benefit to the business and a move should be considerad
« If cost excesds value, then maintain WAS traditions] for those applications
* Maintaining both environments s possible and would provide a “best of both wor

&

This chart is meant to be a one-page summarization of the message delivered in this presentation.

Liberty is receiving focus and investment from IBM, but that does not mean you must move off WAS traditional. The
move to Liberty should be based on business needs and an assessment of the value Liberty provides. Liberty has its
value -- most notably the smaller footprint, greater zIIP offload on z/0S, and flexibility -- but those value attributes
should be weighed against the effort to move from WAS traditional to Liberty.

Focus first on the application and assess the viability of moving them to Liberty. If the application design permits
moving to Liberty, then assess the operational considerations. If the results of the assessment suggests adoption of
Liberty is in the best interests of the business, then a move to Liberty should be considered.

Finally, it is possible to maintain both environments. It may make sense to maintain both and deploy applications to
the runtime environment best suited for the application.

© 2016, IBM Corporation 4

2016, IBM Corporation

IBM Middleware

3

Setting Context

In this section we will provide a bit of a higher-level overview of Liberty and provide information to help you place an
evaluation of Liberty in proper context.

© 2016, IBM Corporation

E:__ —: 2016, I1BM Corporation IBM Middleware
A Brief Historical Timeline ... Version 8.5
r »O “WAS traditional” (continuation of previous architecture)
~2012 %;
. = “WAS Liberty” (the ‘new’ runtime model for WAS)
’
O Version 8 - Installation Manager used to install WAS
//
O Version 7 - Considerable z/OS-exploitation function (including WOLA)
//
O Version 6.1 - Application specs align across platforms, as does the release schedule
7 4
O Version 6 - Application specs come more intoline across platforms
Re
O Version 5, 5.1 - Re-architected from V4; continued functional enhancements
~1999 ¢
O Version 4 - Original on z/0S (not counting V3.5 servlet plugin to HTTP Server)
6

This chart is showing a summarized timeline of the releases of WebSphere Application Server over the years. As you
can see, its roots go back well over a decade to Version 4, which was when the foundation for what we call “WAS
traditional” today was formed. Over the years new releases and versions were introduced. Then in 2012 came the
introduction of Liberty. At that point -- and continuing to this day -- we have two runtime models: WAS traditional,
which is runtime model based on the original; and Liberty, which is the focus of this presentation.

© 2016, IBM Corporation 6

IBM Middleware

WAS traditional z/0S

Liberty z/OS

AppServer Server

................

“RAn-TR mrcelel™

%
8]

» Firstimtredused in Y8500 [2002] sl platfonmns
* Single Il server model ne CR/SRE)
¢ Key attributes: lightweight, composable, dynamic

« The eriginel WA, going back 15 years to Yersion 4
» U 2f0S it ovnsisted of “confrollers™ snd “servanis®
* It was organized into “nodes” and “cells”

« Specific function to exploit z/0S capabilities * Has z/05 exploitation functions

- —— o o ot Do ol o (e

* Considerable production-hardened investment here * Under “continuous development” = frequent updates

Both fall under “WebSphere Application Server” umbrella, but are not the same thing
(Which is why this positioning discussionis needed)

7

For those who may not be familiar with the two runtime models, this chart is meant to provide background on how the
two manifest from a z/OS perspective.

On the left is what we now call “WAS traditional”. It is the original design going back 15 years to Version 4. On z/0OS an
“application server” consists of multiple address spaces -- a control region and one or more servant regions. This
design is exclusive to z/0S; a key reason for this design is it allows WAS z/0S to take advantage of Workload Manager
(WLM) of z/0S for work classification and placement. Management of a WAS traditional environment is performed
within a “cell” (a set of servers that comprise a management domain), and “nodes” (a set of servers on an LPAR that
are logically grouped). WAS z/0S has a number of functions that take direct advantage of the z/OS operating system,
such as WLM, SAF, and cross-memory.

On the right is what we call Liberty. It manifests as a single address space on z/0S. As noted earlier, the key attributes
for Liberty are that it is lightweight (smaller memory footprint; faster startup times); composable (through
configuration you indicate what functions to load); and dynamic (most changes do not require a server restart). On
z/0S there are points of platform exploitation as well -- such as WLM, SAF, cross-memory. Further, Liberty is
developed under the “continuous development” model, which means functional updates are delivered on a more
frequent basis than was done in the past with WAS traditional. It is common to see functional updates for Liberty
delivered in the fixpack stream, which has a quarterly release cycle.

Both WAS traditional and Liberty fall under the “WebSphere Application Server” umbrella, and on z/0S both are
delivered under the same licensing entitlement. This creates some confusion about the role of each, which is why a
positioning discussion -- such as this paper provides -- is needed.

© 2016, IBM Corporation 7

IBM Middleware

2016, IBM Corporation

hat was Behind Creation of Liberty?

WAS traditional ... WAS Liberty ...

... loaded most functions even if ... is composable, allowing for customized
applications did not require them function enablement

... required application and server ... is dynamic, allowing for application and
restarts for most changes configuration changes without restarts

... Has a mature, but somewhat ... has a management model* that is, by
inflexible management model design, flexible and highly scalable

WAS traditional has its architectural roots going back 15 years. Times change,
and a more flexible and dynamic server model was needed. That is Liberty.

* Called “Collectives”. More on that [ater in the presentation.
g

You may wonder why Liberty came along at all. This chart helps explain that.

The creation of Liberty was in response to specific issues related to WAS traditional. This chart summarizes those on
the left, and then indicating on the right how Liberty addressed the issues:

* Footprint -- WAS traditional was perceived as consuming too much memory. Liberty addresses this by being
“composable”; that is, you indicate through configuration what functions to load, thus reducing the footprint of
Liberty to what is needed for your application.

* Restarts -- WAS traditional required application restarts and server restarts for many changes. Liberty addresses
this by having a dynamic update model. With Liberty most application and configuration changes can be picked up
and made available without a server restart.

* Management -- WAS traditional has a management model based on a fixed design of “cells” and “nodes.” It has
served well over the last 15 years, but its design limits flexible changes to the topology. Further, the inter-server
communication model limits the scaling of a WAS cell (more precisely, the WAS “core group”) to about 700 or so
servers. Liberty’s management model -- called “collectives” -- is designed to be more flexible and better scaling.

That summarizes the “why” of Liberty being created by IBM. It’s a story of the technical environment changing over
time and a new application server design being created to address it.

© 2016, IBM Corporation 8

IBM Middleware

*

It is worth understanding WAS Base ----- m WAS ND
this to reduce any confusion Full Java EE L-—-L— WAS Base, plus ...
" HH n . - . . . ege
when these “editions” are Distributed Transactions High Availability The WAS ND
Advanced Security Intelligent Management

referred to in conversation editionis the

. High Scalability
or documentation. I y 1 only one that
|:: :l I:: :l is supported
. — = on z/0S

Liberty Base 5 Liberty Therefore, hat

r=====-% Liberty Core, plus ... LIS EN Liberty Base, plus ... is the focus of
leerty Core ------ 4 Java Messaging Enterprise Class Clustering this document

Java EE Web Profile Web Services Collectives Management

Subset of Liberty NoSQL DB

Increasing Qualities of Service and Enhanced Management

>

Increasing Number of Servers and Concurrent Users
9

When discussing WebSphere Application Server, it’s worth noting the terminology that’s used to refer to the different
offerings that are available.

* Liberty Core -- this is not available on z/0S; it is only available on distributed platforms. This is Liberty only (WAS
traditional is not part of this offering), and it is a subset of Liberty. This is intended to be widely available, easily
downloaded, and easy to acquire and use.

* WAS Base -- this is also not available on z/0S; it is only available on distributed platforms. This includes both WAS
traditional and Liberty. The WAS traditional packaged with this offering is a subset of the full WAS traditional
offered with the “WAS ND” packaging. The Liberty packaged with this offering includes Liberty Core and adds Java
messaging, Web Services and NoSQL DB. But this Liberty is still a subset of the Liberty offered in the “WAS ND”
packaging.

* WAS ND -- this is available on z/0S, as well as other platforms. Consider this the “complete” WAS ... both WAS
traditional and Liberty.

As you look at this chart and go left to right, you see offerings that increase in qualities of service and enhanced
management, and increase in numbers of servers and concurrent users.

For this presentation we are focusing on the far right ... WAS ND. That is what is offered for z/0S.

© 2016, IBM Corporation 9

2016, IBM Corporation

IBM Middleware

»
»

API Gap

Deprecated J2EE Deprecated J2EE
APl Gap
Full WAS APIs Full WAS APIs
Common WAS Common WAS Common WAS

Full Java EE*

Differences in the Application Programming Interface (APls)

Full Java EE*

Full Java EE*

v Java EE Java EE Java EE
Web Application Web Application Web Application Web Application
WAS Liberty WAS traditional WAS Liberty WAS traditional
8.5.0.0 8.5.5.9

Initially the gap was large, and some existing WAS traditional applications could not
run on Liberty. Now, many (if not most) can run on Liberty with little or no changes.

10 * ForLiberty: partial Java EE 6, full JavaEE 7. For WAS traditional: Full JavaEE6, Full JavaEE 7 inbeta

Here we take a look at the differences in the programming interfaces (APIs) between Liberty and WAS traditional, both
at first (back in the 8.5.0.0 days) and today (8.5.5.9). This is a story of the API gap being fairly wide initially, but mostly
closed at this point.

On the left side of this chart is the “API gap” as it existed between Liberty and WAS traditional when Liberty was first
introduced back in the 8.5.0.0 time frame. The gap was fairly wide at that point. Liberty had the ability to host web
applications only. WAS traditional had that plus Java EE and other WAS-specific APls. At that point Liberty was clearly
well short of WAS traditional, and at that point Liberty was mainly seen as a development platform with limited
capabilities.

Fast forward to today (that is, the 8.5.5.9 time frame) and we see that the gap is mostly closed. Now Liberty and WAS
traditional share the bottom four “blocks” in that stack diagram, with only the “Full WAS APIs” and “Deprecated J2EE”
APIs existing in WAS traditional but not Liberty. This means application compatibility between Liberty and WAS
traditional is much greater now than it was initially. The ability to move applications from WAS traditional to Liberty is
greater now than it was before.

Note: and the reverse -- it is now easier to use Liberty as a development platform with WAS traditional as the target for
production deployment. In the past, that worked if the application was just a web application. But now with Liberty
and WAS traditional having more APIs in common, application movement from Liberty to WAS traditional is also a
consideration.

© 2016, IBM Corporation 10

IBM Middleware

5= ©2016, I1BM Corporation

Greater zlIP Offload and Lower Cost

WAS traditional z/0S

AppServer

................

Liberty z/OS

Server

Many “it depends” qualifiers
around these numbers

In general: WAS traditional has
a greater degree of native code
(not eligible for zIIP offload)

w
2]

supporting the Java runtime
than does Liberty

L

~90% or perhaps higher offload

Best way to determine offload
differenceis to benchmark
specific application

~ 80% or perhaps higher offload

In additional to the greater zlIP offload potential, it is possible the same workload running in Liberty would
reguire fewer Value Unit Entitlements (VUEs) and thus imply a lower One Time Charge {OTC) cost.

Using Liberty z/0S with zCAP pricing could provide a very cost-effective solution for new Java workloads on
z/0S -- even when compared across all platforms.

Potential exists for very attractive cost model for Java on z/0S

i Consult with your IBM sales representative for specific details about pricing

There can be a financial incentive to going to Liberty on z/OS based on both the zIIP offload and the way one-time
pricing is charged. Check with your IBM sales representative to discuss pricing options.

© 2016, IBM Corporation 11

2016, 1BM Corporation IBM Middleware

Differences in the Management Models

8.5.0.0 8.5.5.9

WAS traditional

WAS traditional management model is
> mature and functionally stable

f’,

g Initial Liberty management model was
" . . - age .
oGt lacking in functional capabilities

N\
\

Investment focus has shifted to Liberty
and its management model

N
.

Investment also being made in
P dev/ops flows for Liberty

Functional Capability
~

f The models are difforent, so a direct comparison

¥ is difficult. Key point: Liberty has advanced
considerably since 8.5.0.0 and management

Time model is far more feature-rich than it was at first.

12

With respect to the management of the runtime, the story here is again one of a rather wide gap initially, but the gap
closing as time went on and Liberty was developed further.

Note: this is a little more difficult to represent as a one-to-one comparison because the management models are
different. So the graph above is meant to represent a high-level illustration of functional capability. It is not a direct
comparison of feature-for-feature and function-for-function.

The WAS traditional model is based on a “Deployment Manager” (special purpose application server) hosting the
administrative function, with that Deployment Manager “owning” (managing) all the nodes and servers in the “cell.”

All administrative functions are performed through the Admin Console (GUI interface) or WSADMIN (the scripting
interface). That includes configuration changes and application deployments. That administrative model works well. It
is mature and very stable.

Liberty, on the other hand, has a different management model design. It is based on “collectives,” which is a collection
of Liberty servers arranged into a “controller” and “member” arrangement. A server designated as a controller
assumes the role of being a management interface point. Servers designated as members are managed by the
controller. The management model is more flexible than the WAS traditional model in that servers can come and go
from collectives far more easily than they could from the WAS traditional framework. The Liberty collectives
framework also scales to much higher numbers of servers. Whether that’s important to you is a function of how large
a topology you have or are planning. (WAS traditional had a scale limit of about 700 servers, while Liberty collectives
can scale to the 10,000+ number.)

Initially the Liberty management model was very rudimentary. But as the releases of Liberty have come out, the model
has matured more and more. At this point in time the development focus is on Liberty and the Liberty management
model. The WAS traditional management model works well, but has far less new function focus than Liberty enjoys.

© 2016, IBM Corporation 12

IBM Middleware

2016, IBM Corporation

When we Speak of “Operational Considerations,” we Refer to the Following ...

* Product installation

* Product maintenance updates

* Runtime creation

7

@A
L2/

These activities are, to varying
degrees, important to the business

* Runtime provisioning (dev/ops, cloud, containers)
* Runtime configuration changes

* Runtime updates to new versions

* Application deployments / updates

* Backup andrestore The discussion here is how deeply

* Capacity and performance monitoring invested you are in tools and

* Troubleshooting and problem tracking processes for these activities today,
* Usage monitoring and chargeback and how easily can you move to a
* System automation routines Liberty runtime platform tomorrow

... and other activities

13

We have a section on “operational considerations,” which is a broad topic covering many disciplines. When we speak
of that topic -- particularly with respect to z/OS -- we are referring to the types of things listed on the chart.

For Liberty, some of those things are similar in approach and execution to WAS traditional. For example, the “product
installation” bullet implies IBM Installation Manager (IM) for both, and except for disk space and some install syntax
differences, the installation process is largely the same.

For other things -- for example, backup and restore -- Liberty is actually a simpler model because of the simpler
configuration model. Other things -- for example, usage monitoring and chargeback -- may for WAS traditional today
be done with SMF 120.9 records, and Liberty does not have those.

When considering a move to Liberty from WAS traditional, the evaluation and discussion centers around the
operational processes you have today, how deeply you are invested in them from a business perspective, and whether
a transition to Liberty can be done within the context of your existing process and skills.

© 2016, IBM Corporation 13

14

IBM Middleware

2016, IBM Corporation

A High-Level Framework for Evaluating Existing Workload for Move to Liberty

ngh Application / Low Operational

* Applications have dependencies

ngh Application / High Operational

* Applications not easily moved

Little or no scriptinvestment

Vendor application dependencies

Investmentin Liberty skills in plan

* Consider Liberty for new workloads More * Investmentin WADMIN scripts
. s . . * Deep skillsin WAS traditional Admin
* Investigate application re-engineering for = 1 i
cases where move to Liberty is justified 3 | ! * Maintain WAS traditional
9 _
'g o i 1 * Consider Liberty for new workloads
I
82 i |
8 h=] [l 1
E |]
52 : -
= I 1
3 % !] Low Application / High Operational
'§_ - H / « Little or no application dependencies
% i 1 * Investmentin WSADMIN scripts
] 1
. . . //V H] R * Deep skillsin WAS traditional Admin
Low Application / Low Operational >

Operational Dependency \More * Maintain WAS traditional for existing

« Little or no application dependencies v
to WAS traditional * Consider Liberty for new workloads

« Little or no script or skill investment

* Consider Liberty for existing and new
workloads

This chart is providing one of those oft-used “quadrant” structures to help you think about where you operate today
with WAS traditional. The quadrant has two axis:

Application dependency (vertical axis) -- this is a relative measure of how tied your application are to the WAS
traditional API model, and to the WAS traditional CR/SR model on z/OS. Lower on the axis means your applications
are less dependent, and thus moving the application to Liberty would incur less resistance. Higher on the axis
means the applications have some dependencies, and thus moving to Liberty would entail inspection of the
applications and potentially some re-engineering.

Operational dependency (horizontal axis) -- this is a relative measure of how tied you are to the operational
practices you have in place for WAS traditional. The further to the left you call the less dependency you have; the
further to the right the more dependency you have. For example, if you have built important processes around the
SMF 120.9 record, then it implies you fall further to the right on the scale (because Liberty does not cut SMF 120.9
records). Similarly, if you have a large inventory of WSADMIN scripts to automate WAS administration, then it
suggests falling further to the right as the WSADMIN object model is not part of Liberty.

A quadrant is formed by dividing both axis in half. Thus:

Lower-left (low application / low operational) -- based on your applications and operational practices, a move to
Liberty should be relatively easy. Therefore, Liberty can be considered for both new and existing workloads.

Upper-right (high application / high operational) -- you have a high degree of dependency on WAS traditional for
both applications and operations. If you fall in this quadrant then a move to Liberty may be a bit more involved.
You may wish to consider leaving existing workload on WAS traditional, and perhaps consider Liberty for new
workloads if having two runtime models is acceptable.

Upper-left (high application / lower operational) -- operationally you could move to Liberty, but the applications
have some dependencies, so that implies some inspection and potentially some rewrite. You would have to look at
this more closely to see the nature of the application dependencies and what would be involved to make them
capable of moving to Liberty.

Lower-right (low application / high operational) -- the applications can move, but you have a lot invested in the
operational aspects of WAS traditional. This suggests maintaining WAS traditional and perhaps looking to Liberty
for new workloads where the operational practices can be accommodated.

The quadrant is simply a tool to consider where you operate, and what options you may have from there.

© 2016, IBM Corporation 14

IBM Middleware

2016, IBM Corporation

Application Considerations

%

In this section we’ll take a closer look at the considerations around moving applications from WAS traditional to
Liberty.

© 2016, IBM Corporation 15

2016, 1BM Corporation IBM Middleware

ore on the APl Gap between Liberty and WAS traditional

8.5.5.9 JAX-RPC
EJB Entity Beans
Deprecated J2EE el JAXR/UDDI
APl Gap
Full WAS APIs ‘\ WAS Batch(“Compute Grid”)
WS-BA, WS-RM
Common WAS Common WAS JAXM 1.3
ApplicationProfile plie.
Full Java EE* Full Java EE* AsyncBeans, JAX-WS stacks are different
118N Runtime class visibility is different
Java EE Java EE Startup Beans Less EJB/IIOP QOS in Liberty
WorkArea Client code may be different
Web Application Web Application SCA, SDO, XML
J2EE Extensions
WAS Liberty WAS traditional

An application that makes use of the APIs in the “API Gap” list may need re-
engineering to move to Liberty. If the application uses APIs that are common
across WAS traditional and Liberty, then it may move easily.

16 * ForLiberty: partial Java EE 6, full JavaEE 7. For WAS traditional: Full JavaEE6, Full JavaEE 7 inbeta

Earlier we showed you this picture with the “API Gap” for 8.5.5.9 between Liberty and WAS traditional. Earlier we did
not provide detail, but here we do. The focus is on the two yellow boxes -- “Full WAS APIs” and “Deprecated J2EE.”

* Full WAS APIs -- these are APIs above the Java EE specification. They exist in WAS traditional but not in Liberty,
and if an application makes use of these APIs the application would not function properly if moved to Liberty.

* Deprecated J2EE -- these are APIs that have since been deprecated by the standards bodies but are not yet
removed. They are in WAS traditional but not Liberty. It's possible you have applications that still make use of the
deprecated APIs. The same issue arises here as with the full WAS APIs -- if an application is dependent on the APIs
being present, then moving the application to Liberty will result in errors.

Note: in a few charts we will point you to a tool that will scan application binaries and produce a report on the
suitability of moving an application to Liberty. It looks at the APIs used and reports where compatibility with Liberty is
present and where issues arise.

© 2016, IBM Corporation 16

2016, 1BM Corporation IBM Middleware

Considerations Beyond the APls

) An application with a relatively short life horizon

may not be worth moving. Better to leave it where
™ 7 itis and focus energy on higher-value applications
i
i
]

Time horizon for appllcatlon ----------- ' An application with a longer expected life span may

require re-engineering investment to run properly
Value of application investment -----———--- on Liberty. Does the proposed investment yield

positive return for the business?
Potential deployment environments --4

For new applications, do you expect to deploy the
application into environments such as laaS cloud, or
Bluemix, or container environments such as
Docker? That may imply targeting Liberty as that
runtime is better prepared for operations in those
environments.

r--————-

iz

With respect to applications, there are considerations beyond the APIs. They are:

* Time horizon -- if an application is currently hosted in WAS traditional, and you have plans to sunset the application
into the near future, then going through the effort to move the application may not be worth it. Better in that case
to leave the application where it is and let it sunset. Applications with longer time horizons may be worth any effort
to move to Liberty, based on your evaluation of the overall value to the business of moving the application.

* Value of further investment -- let’s say you have an application that has a longer time horizon, but moving it would
imply some rewrite. The question here is whether the application’s value to the business warrants the further
investment in the application. Applications that are central to the business mission would very likely be worth the
effort (provided the overall evaluation suggests a move to Liberty); applications that are less central may not.

* Deployment environments -- this consideration is interesting in light of some of the new developments around
cloud and container environments. If the vision you have for an application is that it be highly-flexible with regard
to deploying into laaS cloud, or Bluemix, or Docker, then you may wish to take a good look at Liberty because it
tends to lend itself more easily to those environments. (WAS traditional can be deployed into those environments.
It’s just that Liberty’s simpler configuration model makes deployment even easier.)

So the exercise is this -- take a look at the application APl usage, and take a look at these broader considerations, then
determine how well your applications lend themselves to being moved to Liberty. Then, after you’ve gone through the
operational considerations (next section), think about where you fall on that “quadrant” chart. That will help you
determine the path you will take when considering WAS traditional and Liberty.

© 2016, IBM Corporation 17

IBM Middleware

© 2016, IBM Corporation

Migration Toolkit for Application Binaries

Your application Migration
binaries Toolkit

Summary report of technology

used in application and target
environments where application
can be deployed

|
ans

Detailed report by file
name, method name
and line number

Main wasDev page:
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration Toolkit for Application Binaries
Technical Overview:
https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/
Updates page:
https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

18

The “Migration Toolkit for Application Binaries” is a utility that scans your applications and reports on what is seen in
the application and what aspects of the application may require update to run on Liberty. The tool is free of charge
and is downloadable from the URL shown in the chart.

© 2016, IBM Corporation 18

IBM Middleware

2016, IBM Corporation

Final Points on Application Considerations

Liberty __Appserver Appserver Liberty
Application :" \‘: :" p Application
-------- S [a=)| (o)) | B
\ J - J
Liberty WAS traditional z/0S WAS traditional z/0S Liberty

This application path is relatively seamless This path can work, but a bit more care needed

Notes: Notes:

* Liberty has Java EE 7, WAS traditional is in beta with that
technology. An application that makes specific use of
Java EE 7 (ex:JSR 352 Java Batch) would not work on
WAS traditional if Java EE 7 not present.

* If application uses APIs in the “API Gap” illustrated
earlier, the application would require updating.

* If the application is relying on session replication
between SRs, that aspect of the application would need
inspection and persistence (if needed) configured in
Liberty using a database or caching layer.

Liberty is a single JVM environment, where WAS
traditional on z/0S has the potential for multiple
application JVMs (SRs). Applications that create
singletons may experience issues.

b]

As we close out this section, let’s touch on a final few points about application compatibility between WAS traditional
and Liberty, particularly on z/0S:

* When moving an application from Liberty to WAS traditional z/OS, the move should be relatively seamless because
the “API Gap” we spoke of earlier showed Liberty being on the lower end of the gap. But that’s not to say the
move is certain to be seamless. Two things to keep in mind -- (1) Liberty now has Java EE 7 and WAS traditional
does not yet have that. So an application written to take advantage of specific Java EE 7 APIs will find those APIs
are not present in WAS traditional (which is still at Java EE 6). And (2), WAS traditional z/OS operates with the
multi-JVM CR/SR model, and if you operate the WAS traditional z/OS server with 2 or more servant regions you are
creating what is in effect a cluster of servers. If the application creates singletons and expects to always be in a
single JVM, then you may experience problems with a multi-SR server on z/0S.

* When moving from WAS traditional z/OS to Liberty, a bit more care needs to be taken. First, there is the issue of
the “API Gap,” which the “Migration Toolkit for Application Binaries” can help you with. That tool will scan your
application and report on what technology is in use and what methods to inspect more closely for compatibility.
Also, if your application runs in a multi-SR WAS traditional z/OS region today and is making use of “session
replication” between the SR regions, then moving to Liberty may introduce differences in behavior. Liberty has the
ability to persist session information, but it does not do so with the same “session replication” mechanism used by
WAS traditional. If session information is created and persistence is needed, that would need to be configured
into the Liberty server and tested to make sure the application operates as expected.

© 2016, IBM Corporation 19

IBM Middleware

Operational Considerations

© 2016, IBM Corporation 20

S= ©2016, IBM Corporation

IBM Middleware

Broad Topic with Many Disciplines

Install and Maintain Plan, Monitor, Troubleshoot
* Product installations ¢ Capacity planning
¢ Maintenance updates ¢ Performance planning
* Createruntimes ¢ Monitoring usage, resources, performance
* Migrate to new versions * Analyze problems, track resolution
¢ Backup andrestore

Develop, Deploy, and Test
* Application designand develop
* Deploymentautomation

Change Management
* |dentify change requirements
* Implement and test

* Promote up to production * Deploymenttarget provisioning
* Track progress, effect back-outs * Test planningand automation
+ Oifver DeyfCips activities
Other?
« funy other operaticns] sciivities
et o the lists above

21

Earlier we introduced the topic of “Operational Considerations” and said it was a broad topic with many disciplines.
Here we are re-iterating that point by organizing some of the tasks into logical groups.

The point of this chart is to start the thought process around the present-day operational processes and how operating
Liberty would apply. As mentioned earlier, some of the tasks are very similar; some are different.

© 2016, IBM Corporation 21

© 2016, IBM Corporation

IBM Middleware

Comparison Grids to Follow

Operational
attribute or task

Runtime, Liberty or
WAS traditional

2

Liberty WAS Traditional
Installation mechanism Installation Manager Installation Manager
Install size 200MB, granular control 2GB
Memory size Lower (“50MB min/server) Higher (*1GB/server)
Operating systems Windows, Linux, AIX, HP, Solaris, Windows, Linux, AIX, HP, Solaris,
1BMi and z/0S 1BMi and 2/0S
2/0S operational mode UNIX process or STC STC

Virtual, cloud, containers

VMs, laa$, PaaS, Docker

VMs, laa$, Docker

Java SE support

Any 1.6, 7.x or 8.x

IBM only 1.6, 7.x, 8.x coming

Java EE support

Partial 6.0, full 7.0

Full 6.0, full 7.0 in beta

Fix Packs and iFixes

Yes

Yes

New features and functions

Frequent with continuous delivery

Major version updates only

Oe00@e0 @00Ce@

Green = same
Yellow = delta

By walking through the operational attributes it has the potential to stimulate thinking
and discussion about your current environment compared to Liberty. We encourage the
discussion. The objective is a clear understanding of the similarities and differences.

What follows is a set of charts that show a table comparing Liberty with WAS traditional across a set of operational
attributes or tasks. The circles off to the right indicate similarity (green dot) or some difference (yellow dot).

Again, the objective here is to provide a discussion framework in which the very broad topic of operational
considerations can be discussed.

© 2016, IBM Corporation

22

© 2016, IBM Corporation

IBM Middleware

General Product Considerations

Liberty

WAS traditional

Installation mechanism

Installation Manager

Installation Manager

Install size

200MB, granular control

2GB

Memory size

Lower (“~50MB min/server)

Higher (V1GB/server)

Operating systems

Windows, Linux, AlX, HP, Solaris,
IBMi and z/0S

Windows, Linux, AlIX, HP, Solaris,
IBMi and z/0S

z/0S operational mode

UNIX process or STC

STC

Virtual, cloud, containers

VMs, laa$, PaaS, Docker

VMs, laaS, Docker

Java SE support

Any 1.6, 7.x or 8.x

IBM only 1.6, 7.x, 8.x coming

Java EE support

Partial 6.0, full 7.0

Full 6.0, full 7.0 in beta

Fix Packs and iFixes

Yes

Yes

New features and functions

Frequent with continuousdelivery

C000e0O @ OO0O@

Major version updates only

28

Here is the first table in a set of such tables that compares operational tasks.

© 2016, IBM Corporation

23

© 2016, IBM Corporation

IBM Middleware

Configuration and Deployment

Liberty WAS traditional
Composable runtime Yes (via Features) No
Dynamic configuration Yes Partial

Configuration structure

Relatively simple, flexible location

More complex, defined location

Configuration editing

Simple XML updates; admin tools

Admin console; WSADMIN scripting

Configuration updates

Simple file-based

XML file deltas via tools

Central management

Collectives (no agents)

Cell (with node agents)

Central managementscale

Very small to 10,000+

Very small to 700 maximum

Central management failover

Yes (controller replica)

No (restart DMGR on other LPAR)

Configuration ownership

Each server (no synchronization)

DMGR (central with synchronization)

Application deployment

Manual, script, with server package

Admin Console, WSADMIN script

Application update

Replace applicationfile

Redeploythrough Admin

Product update

No migration

O0O0O0OO0O0O0O0O00O0O0O0

Migration tools

24

More operational considerations ...

© 2016, IBM Corporation

24

© 2016, IBM Corporation

IBM Middleware

Operational Capabilities

Liberty

WAS traditional

HTTP load balancing

Plugin, ODRLIB, any HTTP proxy

Same as Liberty, plusJava ODR

HTTP session replication

DB persistence or WXS caching

Same as Liberty, plus DRS

Scripting support Any WSADMIN (JACL or Jython)
Dynamic clusters / auto-scale Yes Yes

JMX client Java, REST WAS Admin Client
Monitoring mBeans, PMI PMI
Fine-grained admin authority No (single adminrole) Yes

JMS providers

Internal, WMQ, 3" Party

Internal, WMQ, 3" Party

Clustered JMS provider No (use WMQ) Yes
2PC transactionrecovery Yes Yes
Remote EJB calls Yes Yes
Runtime class visibility Defined API Internals are accessible

Docker support

Yes (collective supportin beta)

Yes

| JOX X JOX JONOXON NOXOX®

25

And still more operational considerations ...

© 2016, IBM Corporation

25

IBM Middleware
Liberty WAS traditional
Default passwords No No O
Minimal ports opened Yes No O
Secured remote admin Yes (mandatory) Yes (but can be turned off) O
File user registry Yes (server.xml) Yes (file based) ()
Federated LDAP or SAF Yes Yes @)
OAuth, OpenlD, OIDC client Yes Yes @)
OIDC server/provider Yes No O
LTPA, SPNEGO tokens Yes Yes O
SAML Web SSO Yes Yes ()
SAML Web Services Yes Yes .
User and Group API Yes Yes .
Federated File registry w/ LDAP Yes Yes .
28

The first of two security considerations tables.

© 2016, IBM Corporation 26

IBM Middleware

Liberty WAS traditional
Auditing No Yes O
Advanced key/cert management Yes Yes O
Local OS registry No (yes if z/OS = SAF) Yes O
JAX-WS support for LTPA No Yes O
JSEEHelper API No Yes O
27
More security considerations.
© 2016, IBM Corporation 27

IBM Middleware
Liberty WAS traditional
Multi-JVM (CR/SR) No Yes O
z/0S Connect Yes No O
ZWLM Yes (Service and Report classification) Same, and work placementby SC | ()
WOLA local adapters Yes (no 2PC yet) Yes @)
RRS TX coordination Yes (JDBC only) Yes O
SMF request tracking Yes (HTTP only) Yes @)
Messages to server job log Yes Yes @)
Messages redirect to console Yes Yes @)
Hung thread stop and recover No Yes O
Pause/Resume Listeners No Yes O
Dispatch Progress Monitor Yes (with Health Manager feature) Yes .
MODIFY interface Yes, but limited Yes O
=

This chart highlights the degree to which Liberty and WAS traditional on z/OS is capable of taking advantage of the
z/0S platform. Both are capable of exploitation, but WAS traditional -- being a product that’s been around longer --
has a deeper set of such things. But Liberty has a set as well, and this chart outlines what they are.

© 2016, IBM Corporation 28

IBM Middleware

2016, IBM Corporation

Summary of z/0S Operational Considerations

Install and backup/restore are somewhat similar for both

Liberty requires no migration tools to move to new version, WAS
traditional does, and the effort to migrate is not trivial

Administrative interfaces are different; scripting interfaces are different

Both are operated as started tasks, so:

* Can use system automation routines
* Can monitor with SMF Type 30

Both are capable of WLM service class and report classification based on
matching request URI patterns

WAS traditional has deeper z/0S integration functions, but if that’s not
something you’re making use of, then it’s less a factor

2%

This chart summarizes the comparison tables we just went through with a specific focus on z/0S.

© 2016, IBM Corporation 29

IBM Middleware

2016, IBM Corporation

Performance Considerations

0

In this section we will walk through a set of charts that compares the performance of WAS traditional with Liberty.

Note: these performance measurements were conducted in a controlled environment under very specific conditions.
Your results may vary. These results are not a promise of performance results.

© 2016, IBM Corporation 30

IBM Middleware

. WAS traditional . Liberty

Startup Time, App Deploy Time Memory Footprint, Disk Size
20 4000
- 16.8 o = 3430
cg|s S & |2000
Sz c = |2500
A2 o £ 2 | 2000
£ 5.5 5.2 ‘T T |1s00
gz|s £ 2 1000
£2 u 2 | s00q 2l 126 -
0 0
startup Time(with Apps) App Deploy Time Memory Footprint Disk Size
Startup time for Application deployment Memory footprint for - -
. . . ; . Disk size for Liberty 10%
Liberty 32% the time time 36% the time of Liberty 47% that of that of WAS tra(;ittyionalo
of WAS traditional WAS traditional WAS traditional

31 Performance results derived ina controlled environment under specific conditions. Your results may vary depending on a number of factors.

This chart shows four comparison in two graphics: startup time, application deployment time, memory footprint, and
disk size.

 Startup time (left side of chart, left bar graph) -- here we see that Liberty outperforms WAS traditional by quite a
margin. The time for Liberty (5.5 seconds) is 32% of the time of WAS traditional (16.8 seconds). Or stated another
way, Liberty is 68% faster in server startup than WAS traditional.

* Application deployment time (left side of chart, right bar graph) -- Liberty’s time to deploy an application was only
36% the time required by WAS traditional.

* Memory footprint (right side of chart, left bar graph) -- the bars in this graph are relatively small because the left
axis is determined by the “disk size” bars in the chart. Still, if we look at the numbers we see that the memory
footprint of Liberty (126.1 MB) is half the size (47%) of the 269.3 MB consumed by WAS traditional.

* Disk size (right side of chart, right bar graph) -- here the difference is quite stark. The WAS traditional disk
footprint was 3,430 MB compared to 338 MB for Liberty. Liberty’s size is a mere 10% that of WAS traditional.

© 2016, IBM Corporation 31

IBM Middleware

2016, IBM Corporation

Throughput on Distributed Platforms ... z/OS on Next Chart

Web Services SOABench

DayTrader 3 EJB, Hotspot JDK 8_31 Messaging, JMS Prims 10k/10k

 ===============7]
1 5 7 T
: 8000 1 ’ : 1 1
N e e e 1 = L. . e = a4 2500 1 1
o E 5 £ | 6000 1 Tlow | - -
2% [§5 22 52
&3 |3 %0 ® o | 4000 - £ & [1500 E—
~ = @ o = g E 1 1
g5 NN £ £ | 2000 | S g |00 : -
= 2000 =g = = | s00 1 —r= I
= 1000 - 0+ . =
WAS 8.5.5.5 WAS 8.5.5.5 WAS 8.5.5WAS WAS 8.5.5 Liberty 0
Liberty Full Profile Full Profile NonPersistent Persistent
Liberty 99% of WAS traditional Liberty 100% of WAS traditional Liberty 108% of Liberty 97% of

WAS traditional WAS traditional

Effectively the same throughput for WAS traditional and Liberty on the distributed
platforms for DayTrader (EJB), SOABench (SOAP/WSDL), and Messaging (JMS)

No loss of throughput moving from WAS traditional to Liberty on distributed

32 Performance results derived ina controlled environment under specific conditions. Your results may vary depending ona number of factors.

This chart shows a set of throughput measurements for different applications.
Note: this is for distributed platforms. This is not z/0S. The z/0S throughput chart comes next.

The left-most bar chart is for the DayTrader benchmark application, which is an EJB application with DB2-backed data
persistence. The middle chart is the SOABench application, which is a SOAP/WSDL web services benchmark
application. And the right-most chart is using the JMS Prims application to measure messaging throughput.

What we see is the throughput for Liberty vs. WAS traditional is very close to one another. The largest difference was
seen in the JMS throughput test for non-persistent messaging, where Liberty achieved 108% the throughput of WAS
traditional (called “Full Profile” on these charts).

The message here is that moving an application to Liberty does not imply any loss of throughput.

© 2016, IBM Corporation 32

IBM Middleware

DayTrader 3 EJB DayTrader 3 EJB Note: the throughput axis for z/0S
shows results normalized ... that is, the
6590 6656 > 138 WAS traditional throughput achieved
7000 ‘ was setto “100” and the Liberty
_— 6000 | throughput achieved was proportional
'g'- % § 5000 - 8 to the baseline 100 value.
'ucn ﬁ = 4000 - _% - Actual throughput is a function of
g = z 3000 | %ﬂ g many factors, including processor
s g 29 speed, memory, cache size, and I/O.
s W 2000 | £ 2
T 1000 + '-; 2 The tests performed here were not
= Q3 meant to compare distributed directly
WAS 8.5.5.5 WAS 8.5.5.5 = i
Liberty Full Profile o :EED Liberty Z/OS with z/OS. Rather, the point here is
E — that on z/0S, Liberty outperformed
ZO WAS traditional. On distributed, the
two were roughly equivalent.
o WAS traditional z/OS
Distributed
(from previous chart)
VES.S full prefile VB S5 Likerty profile

This is because Liberty’s single-JVM model is more efficient than WAS traditional’s
multi-JVM model with controller and servant regions

33 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

This chart is showing the throughput achieved for the DayTrader application with Liberty and WAS traditional on z/0S.

Notes:
e The distributed platform graph on the left is just for reference. That picture comes from the previous chart.

* The performance numbers for the z/0S test (right side of the chart) are normalized, so a direct comparison of the
vertical axis of that picture with the picture on the left should not be attempted. What normalized means is the test
was performed on z/0OS WAS traditional, and the throughput achieved was equated with the number 100. The
throughput for Liberty (which was higher) was made proportional to the “100” set for WAS traditional. Therefore,
the left axis of the picture on the right is not the nominal throughput achieved, but a normalized representation of
the throughput achieve, Liberty vs. WAS traditional.

The reason Liberty z/0S had higher throughput is because of the design of Liberty z/OS compared to the design of WAS
traditional on z/0S. On z/0S, WAS traditional has the multi-JVM structure with controllers and servants. That implies a
longer code-path through the CR, queuing with WLM, and finally dispatching to the SR. Liberty z/OS -- a single JVM
model -- has a shorter code path to achieve dispatching of the work to a thread for execution.

WAS traditional on the distributed platforms is also a single JVM model, which is why the WAS traditional vs. Liberty on
those platforms showed comparable results.

WAS traditional z/OS and its CR/SR model provides some useful benefits with regard to queuing and dispatching to
multiple JVMs. But that model comes with a “cost” in terms of throughput, and the picture on the right-side of the
chart above illustrates the throughput “cost”.

© 2016, IBM Corporation 33

E = 2016, I1BM Corporation IBM Middleware
The Value of z13 Hardware, Java 8 and SMT Exploitation
SSL-Enabled DayTrader 3.0 with Liberty z/0OS measured
WAS 8.5.5.5 with SSL (clear key) 1. Java8onzEC12
z/OS - 1 CP and 4 zIIPs 36% improvement --improved JVM/JIT
: Lo -.+ (1.5/1.1=1.36)
e zEC12 Hardware | z13 Hardware ’,/' @----., 26 2. Value of z13
2.6 <::| i |:> ’,/’ - 33% improvement -- faster HW, greater
2.4 : ’,zf' : instruction exploitation by SDK
= - =
- _§- _ e ! (2.0/1.5=1.33)
20 3£ L f"@' -------- » 20 3. Java8onz13
T ESB ’,—/ : : 1.8 43% improvement --improved JVM/JIT,
18 5 E ’,¢’ I : greater instruction exploitation by SDK
16 8 £ @____, s o1 (2.0/1.4=1.43)
T X
14 EZ 7 : - 4. Value of SMT
2° . 1 30% improvement -- exploitation of
1.2 o - S — _@_ _________ SMT by Java 8 SDK
1.0 - . 1 (2.6/2.0=1.30)
0.8 : 5. Overall
BECLZ zELLR ZEGL2) 208 nedStAT 222 ST =13 noSMT 213 88T laven b, WYY oo, and 5041, We s
dowea 7 ERG Jawa Pl Jaen ® | Be 7A Javg 7.4 lanem & Jah & a 15 i prosannat
SR = SR SFA 2af.1=-2.38)
34 Performance results derived ina controlled environment under specific conditions. Your results may vary depending on a number of factors.

This chart is showing a set of performance result comparing several different things, so a few moments explaining the
chart is needed:

* The chart is divided with the bold dashed vertical line; on the left is a set of performance runs on the IBM zEC12
hardware, and on the right is a set of performance runs on the IBM z13. The z13 hardware is newer, faster, and has
instructions available for exploitation, which Java 8 takes advantage of.

* Multiple levels of Java are being compared here. The key comparison is between Java 7 and Java 8. The reason that
is key is because Java 8 has two major areas of improvement over Java 7 -- (1) more efficient JVM and JIT
processing, and (2) direct exploitation of new instructions on the z13 hardware, which makes JIT processing even
more efficient.

¢ 713 SMT (simultaneous multi-threading) capability, which enhances performance when the Java SDK takes
advantage of the SMT feature present on the hardware.

The chart is augmented with arrows and numbered blocks to draw your attention to the performance improvements
and where they come from:

1. The comparison here is between Java 7 and Java 8 on the zEC12 machine. So the hardware stays the same, but the
Java SDK level changes. This is the value of Java 8. This represents the general performance improvements made
to the JVM and JIT processing. Since this is on the zEC12, the newer instructions of the z13 are not present, so that
variable is not part of this performance benefit illustration. We see a 36% improvement.

2. The comparison here is between Java8 on the zEC12 versus Java 8 on the z13. So the Java SDK level stays the same
but the hardware changes. Two things are going on here: (a) the Java 8 SDK recognizes it is on a z13 and it knows
there are instructions on the chip that aid the JIT processing, so it takes advantage of those instructions
automatically; and (b) the z13 hardware is faster and with larger cache, so anything that shows up on the z13 will
tend to run faster. We see a 33% improvement here.

3. The comparison here is Java 7 vs. Java 8 on the z13. This represents the general improvements in the Java 8 JVM
and JIT processing, as well as the specific exploitation of the z13 instructions by the Java 8 JIT. 43% improvement.

4. The comparison here is no SMT vs. SMT where the Java level is the same (Java 8) and the hardware is the same
(z13). We see a 30% improvement.

5. Finally, if we combine all the changes of comparisons 1 through 4 we derive an “overall” performance benefit. This

includes the benefits of the Java improvements, the hardware improvements, and the SMT processing. Here we

see a 136% improvement, which is a more than doubling of the throughput.

© 2016, IBM Corporation 34

© 2016, IBM Corporation IBM Middleware

Asynchronous v. Network 1/0 in Liberty z/0OS

Asynchronous /0 performance benefits are most significant with larger numbers of concurrentclients:

Three key points:
1. Asynchl/O > Networkl/O

- 34

-

8000 2 In all three concurrent user scenarios,
g .’ Asynch |/O was 30% or more greater
§ 7000 fe throughput
D o0 'o" B s 2000 concurrent=+30%
g_ 4000 concurrent=+31%
n 00 8000 concurrent=+35%
“w
S 4000 2. Network /O mostly flat
E — As concurrent users scale up, we see a

relatively flat line for Network 1/0
(~1.9% improvement 2K to 8K)

3. Asynchl/O trends up

2000 Network Asynch
1/0 1/0
1000
As concurrent users scale up, we see a

2000 4000 trend upwards with Asynch 1/0
Husnber of concurent chents 5. Simprovenent 21 1o 8K}

35 Performance resulis derived in a controlled environment under specificconditions. Yourresults may vary depending onanumber of factors.

One of the new functions added to Liberty z/OS in 16.0.0.3 was "Asynchronous I/0." This function is particularly useful
when large numbers of concurrent users are engaging with a server. To measure the benefits of this we compared
Liberty z/OS against Liberty z/OS -- the same 16.0.0.3 level -- with the default "Network 1/0" vs. the new Asynchronous
I/0 function enabled. We scaled up from 2,000 concurrent users to 4,000, then 8,000.

The chart has three key points we wish to draw your attention to:

1. Thereis an increase in throughput by switching on Asynchronous I/O. The percent increase is a function of the
number of concurrent users. We saw 30%+ improvement across the three levels of concurrent users.

2. Notice that the Network 1/0 function does not really scale up as we increase the concurrent users. It's true that it
did not degrade either, but the throughput was essentially flat.

3. However, we did see a slight trend upwards in the throughput when using Asynch 1/0O, about a 6.5% increase from
2,000 concurrent users to 8,000 concurrent users. That shows that not only is this function beneficial when
compared to Network I/0, but it also works well as we scale up the concurrent users.

© 2016, IBM Corporation 35

IBM Middleware

Ten (10) Liberty Serversin a Collective onz/0S This chart is showing the CPU time
for 10 Liberty z/OS serversin a

" Collective as they idle

The Y Axis shows the CPU time in
seconds for all 10 serversat each
hour mark (the X Axis).

When configured with the default
file monitoring setting, the
environmentaveraged about 11
CPU seconds per hour for the 10
servers.

Time in Seconds / Hour

When file monitoringis turned off,
the CPU time dropped to about 3
seconds total per hour for the 10

0 Hour First Hour 2nd Hour 3rd Hour 4th Hour servers.

2 File Monitoring Off

el Teedlerfred Tus somire] ledeaa et pnn i, o ey varypdspendingmsnumbereiTatoe,

This chart is showing the CPU time for ten Liberty servers at idle when file monitoring is one compared to when file
monitoring is turned off.

Note: file monitoring is what allows Liberty to detect when a configuration or application has been changed. By default
the file monitoring is set to occur every % second, which is wonderful for a development environment, but it does tend
to add up over time in terms of CPU used. We anticipate most production environments will turn file monitoring off as
a means of better controlling updates to the environment. Doing this also implies less CPU because the servers are
polling against the file system looking for changes.

This chart has two lines -- the upper line represents 10 Liberty z/OS servers with the default 500ms polling interval for
file monitoring; the lower line representing the same 10 Liberty z/OS servers with the file monitoring disabled. The
servers ran for four hours, and we captured the accumulated CPU for each hour at the hour marker.

The key point is what's illustrated by the two horizontal dashed lines and the little green triangle showing the delta
between an approximate 11 seconds/hour CPU time with file monitoring vs. approximately 3 seconds/hour when file
monitoring is turned off.

© 2016, IBM Corporation 36

2016, IBM Corporation

IBM Middleware

z/ OS5 Liberty Ramp-up with IBM Java 8

DayTrader 3 Throughput
zOS 64-bit, 4 zEC12 cores, Liberty 8.5.5.5 @

___________ _@________________ === -»

o
(7]
@
[e)]
1=
5
Q
L
[o)]
3
o
° Java 8
Java 7.1

Elapsed Time (sec)

— Java 8 -Xtune:virt (warm)
Java 7.1 -Xtune:virt (warm)

Steady-state throughput improvement Java 8 over Java 7 with -Xtunesvirt
Once steady state is achieved, Java 8 results in better throughput

37 Performance results derived ina controlled environment under specific conditions. Your results may vary depending on a number of factors.

®

Ramp-up improvement
due to -Xtune:virt

Less elapsed time to
steady state when -
Xtune:virt used

@

Ramp-up improvement
Java 8vs. Java7

Java 8 achieved
steady state in less
elapsed time than
Java7

Here is another chart where several things are going on, so we’ve added arrows and numbers to draw your eye to the

key performance comparisons we wish to highlight:

1. This compares the elapsed time difference between when Java 8 with -Xtune:virt set and Java 8 where that
property is not set. The starting “dot” is where Java 8 with Xtune:virt reaches steady-state, and the second “dot”
is where the Java 8 without Xtune:virt reaches steady state. The startup time is improved by approximately 88%.

2. This compares the elapsed time difference between when Java 8 without -Xtune:virt reaches steady-state and
when Java 7.1 without -Xtune:virt reaches steady-state. That’s about a 22% improvement.

3. This compares the throughput difference between Java 7.1 and Java 8 on a zEC12 with -Xtune:virt set. We see

the general Java 8 improvements we saw on the previous chart.

© 2016, IBM Corporation 37

S== © 2016, IBM Corporation IBM Middleware

Startup footprint : WAS traditional ND on z/0S vs. Liberty z/0S

WAS traditional Network Deployment on zZEC12 Liberty Collectives on zEC12
LY Tierre Elapsd Tirme Memary LPUY Tirmve Elapsed Tims Menmory
Provess Names {zeconds} {secands) iMEB} Prouess Mame {saoonds) {seconids) {MIB}
DGR CR 15.96 3z 3064 Conttroller 882 2.3 153
LAGR SR 2081 13 2980 Teflemiserd 596 1.7 Wk
Mode Agent 11.38 72 224.0 Member2 5.14 1.9 141
Memberl CR 10.30 18 239.2
femberd SR 7.58 7 2554
ViemberZ CR 10.20 19 2416
Member2 SR 7.56 7 259.6
Total 83 169 1925.2 Total 20.72 5.9 432

Liberty involves fewer processes to create a two-member cluster, and the design of
Liberty provides a smaller footprint and faster startup. The results bear this out.

38 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

This table is comparing the startup footprint of a minimal WAS traditional z/OS ND cell against a minimal Liberty z/0S
collective. The comparison is not apples-to-apples because the minimal WAS z/0S ND cell has 7 address spaces while
the minimal Liberty z/OS collective has just three. But therein lies the benefit -- Liberty z/OS, but it’s single JVM model
and the agent-less management model provides an opportunity to reduce the address space, memory, and CPU
footprint of the server topology.

The first and most direct comparison is the “total” row at the bottom. There we see that the WAS z/0OS ND cell took 83
CPU seconds, 169 elapsed seconds, and 1925MB of memory; the Liberty collective 21 seconds, 6 seconds, and 432MB.

If you wished to make a more granular comparison, then add the CR and SR values for an ND server and compare
against the Liberty member; or the DMGR CR and SR numbers and compare against the Liberty controller. The WAS
z/0OS ND Node Agent has no direct comparison against Liberty since the Liberty collective model is agentless.

© 2016, IBM Corporation 38

2016, 1BM Corporation IBM Middleware

WS #2058 ig} Liberty 2/ 05
Versiony 16.0.0.2
I cpuTime
250
Elapsed Time

m ~
E 200 Shutdown Time
S
LY
“ 150
£
v
'§ 100
[y

- Start-up and shutdown of

I I ‘ _ 10 servers in a Liberty
0 Hl= - - -_. ' Collective is significantly
Deployment Node Agent 10 App n Collect 10 Liberty .
Manager Servers Controller Servers faster and more efflClent.
22 Per it i i) ik nsher mpesiitmmalitiam. ooy H i Hingz o e el

Here we're comparing WAS traditional against Liberty with three measurements: CPU time to initialize the servers,
elapsed time to initialize the servers, and elapsed time to shut down the servers. The gray vertical line separates WAS
traditional (left side) from Liberty (right side).

WAS traditional has a different management model from Liberty. To create a roughly equivalent setup, we had a WAS
traditional Network Deployment configuration with a Deployment Manager, a Node Agent, and 10 application servers.
On the Liberty side we had a Collective Controller and 10 Liberty servers.

As you can see, there's a striking difference between the left side of the chart and the right. That's the nature of
Liberty and its lighter-weight model. It's also the nature of Liberty with its single JVM model vs. the multi-JVM model
of WAS traditional. The left side of this chart implied 23 address spaces --two for the Deployment Manager, one for

the Node Agent, and 10 x 2 = 20 for the ten application servers. The Liberty side of the chart implied 11 address spaces
-- one for the Collective Controller, and one each for the 10 servers.

© 2016, IBM Corporation 39

= IBM Middleware

S5 02016, IBM Corporation

Memory Footprint: WAS traditional vs. Liberty

WAS traditional z/0S <::‘ ,:> Liberty z/0S
- Version 9 16.0.0.2
5172

w5000
3
2
8 .
m LU
]
=
£ 3000
o
N
wv

LU 1444

1000 784 Memory footprint for 10

. 236 153 Liberty servers is almost 5
0 —1 — "
Deployment Node 10 Collective 10 Liberty tlmes less compare to 10
v Agent Applicati Controll Se aes
i e mereller Semver WAS traditional servers.
i Pl resy el e ledsiensiederapeitossmlifone. Weurreailonsy ey darandingananumbsref fabue,

Another WAS traditional vs. Liberty chart, this time comparing the memory footprint of the same setup as the previous
chart:

* WAS traditional -- Deployment Manager (2 address spaces), Node Agent (1 address space), and ten servers with a
controller and servant for each (20 address spaces).

* Liberty -- Collective Controller (1 address space), and ten servers (10 address spaces).

The difference is due to the fact WAS traditional tends to load the full Java EE container environment while Liberty
does not. The default heaps are roughly the same, but the expansion of the heaps to accommodate the loading of the
function implies WAS traditional takes up a larger footprint than does Liberty.

© 2016, IBM Corporation 40

? 2016, IBM Corporation IBM Middleware
Idle CPU Time: WAS traditional vs. Liberty
WAS treditionol /08 ~ Liberty 2/08
Yorsdon @ Y 180.9.2

R 120
3
€ =0
]
Q
Q
wv
L 60
L]
£ 39 . . .
Gl Idle CPU time with 10 Liberty

o e servers is approximately 3 times less

. 716 . than WAS traditional servers. The
0 Lo — time shown is average per hour.
Deployment Node 10 Collective 10 Liberty
Manager Agent Application Controller Servers
Servers
2 Pexlorr | il st et Vo i Al g ean el

Note: this is a different measurement from the "Idle Server Time" we saw earlier. That was comparing Liberty vs.
Liberty with file monitoring on vs. off. This is WAS traditional vs. Liberty.

This is our roughly equivalent 10 application server environments, with WAS traditional on the left and Liberty on the
right. We're capturing the CPU time for the idle servers for a given hour of elapsed wall time. The Liberty server was
set to file monitoring off to match WAS traditional's lack of file monitoring. The results are shown in the chart. If we
focus just on the application servers, we see the 10 WAS traditional servers (consisting of a CR and an SR) consumed

approximately 120 CPU seconds per hour, while the 10 Liberty servers consumed 39 CPU seconds.

Note: when a Liberty server is part of a collective, there is some communication with the controller, even at idle.
Earlier we saw a Liberty server at idle averaging 3 CPU seconds per hour, but that test was for 10 servers not part of a
collective. This is 10 servers that are part of a collective. We see a bit more (0.9 CPU seconds / hour average)
associated with collective communication.

© 2016, IBM Corporation 41

? © 2016, IBM Corporation IBM Middleware
mzm WAS traditional v Liberty on z/0S
45000 . WAS traditional V9 Liberty 8.5.5.7 . Liberty 16.0.0.2
Scenario is COBOL batch
40000 calling in to Java in WAS
o traditional and Liberty
S Liberty's WOLA support is in
§ S0 E general more efficient than
’g 25000 WAS . We see greater
8 ® throughput comparing WAS
§ 2nm i traditional V9 vs. Liberty
5 - . 8.5.5.7 (highlight @)
o i In 16.0.0.2 further
enhancements were made
5000 the Liberty WOLA support
providing even greater
’ 100 bytes 1000 bytes 4000 bytes 8000 bytes 32000 bytes throughput (highlight @)
Payload Size in Bytes
g2 el caslln izl D spmeniificeom it Tou T - el fezsinara,

Now we turn to some WebSphere Optimized Local Adapter (WOLA) comparisons. We're comparing WOLA in WAS
traditional against WOLA in Liberty; and further, two levels of Liberty. We have the two levels of Liberty because with
16.0.0.2 improvements were added to the Liberty WOLA support to make it more efficient.

The chart shows five groups of tests based on payload size, with each group comparing WAS traditional V9 against
Liberty 8.5.5.7 and Liberty 16.0.0.2. This test was a COBOL batch program processing inbound requests against the
Java code running in the WAS server.

Let's focus on the 4000 byte payload and note the two highlighted differences. The first is the difference between
WOLA in WAS traditional vs. WOLA in Liberty at the 8.5.5.7 level. Here we see a considerable throughput
enhancement with Liberty, and that's due mostly to the generally more efficient design of WOLA and Liberty compared
to WOLA and WAS traditional.

Note: a good portion of that is due to the controller/servant design of WAS traditional. WOLA communications go first
to the CR, then to the WLM queue, then dispatched to the SR where the work is processed. The response flows back
from the SR to the CR, then across WOLA to the COBOL program. Liberty has one JVM, so the whole CR-to-WLM-to-SR
flow is eliminated. It's WOLA straight into the JVM that hosts the target Java program.

Now look at the second jump in the middle of the chart. That's WOLA Liberty 8.5.5.7 vs. WOLA Liberty 16.0.0.2. This
illustrates the benefit of the enhancements for WOLA put into the 16.0.0.2 release of Liberty.

© 2016, IBM Corporation 42

? © 2016, IBM Corporation IBM Middleware
WOLA and IMS Inbound - WAS traditional v. Liberty on z/0S
The Liberty z/OS support for WOLA and IMS came available in the 16.0.0.3 release
250
I wastraditional vo [JJj] Liberty 16.0.0.3
147%

200
R 61%
< 94% 50% n o
7 [k | Lo][] []
b
Q
e 100
: U1 B PR BR PR PR}
3
s
o :

. Liberty outperforms

traditional WAS in
) all the payload sizes
100 22K 84% 128K
& Pl e it Eem el it pesiteemmdilizms. Yozl g Hepend pen amuTmier e semTs,

Let's turn our attention to WOLA and IMS. The IMS support for WOLA Liberty came in the 16.0.0.3 release of Liberty
z/0S, so that's the level we're using here. The comparison is WAS traditional vs. Liberty. The scenario is inbound
processing; that is, a program in IMS calling across the ESAF interface and WOLA into the WAS server.

Note: this chart has the WAS traditional throughput numbers normalized to a baseline 100. That's why every payload
size bar for WAS traditional is showing '100' for its requests per second. This helps illustrate the relative performance
benefit of WOLA and Liberty for IMS processing as the payload size increases.

What we see is that for very small message sizes the performance advantage of Liberty WOLA is relatively large. The
reason is because with a smaller message size there is more processing relative to payload to get the messages through
the CR/SR structure of WAS traditional compared to Liberty. Said another way, WAS traditional is less effective with
smaller message size "chatty" communications than is Liberty. Once we get up into the 8K message size and above, we
see that WOLA Liberty tends to perform between 40% and 50% better.

© 2016, IBM Corporation 43

=== © 2016, IBM Corporation

IBM Middleware

WOLA and IMS Outbound - WAS traditional v. Liberty on z/0S

The Liberty z/OS support for WOLA and IMS came available in the 16.0.0.3 release

8000 B wastraditional vo [Liberty 16.0.0.3

| 9.89% | | 10.36% |

7000

6000
5000
4000
3000

II ==
II l I 4.19%

Transactions per Second

2000 L
4.30%
1000
0 il
100 1K 4K 8K 16K 32K 64K

128K
Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes
Payload Size
Wi g et el it 50 epawlcamitims, Rarmea g e e e,

Liberty outperforms
traditional WAS in all the
payload sizes ranging from
~10% up to 32K payloads
and ~4% in 64k and 128k
payloads size.

Here is WOLA and IMS for Liberty where the scenario is outbound; that is, a Java program in WAS is talking over WOLA
to an IMS region where a target program receives the call. Again, we increase the message size and compare the

throughput WAS traditional vs. Liberty.

Note: when the scenario is outbound the processing in WAS traditional implies less processing overhead than when the
message comes inbound to WAS. The reason is because when going outbound, the Java program in the servant does
not have to go through the WLM queueing mechanism. The message is cross-memory retrieved by the controller from
the servant and passed over the WOLA interface. So the efficiency delta is not nearly as great for outbound as we saw

for inbound.

What we see in this case is a general benefit to WOLA in Liberty compared to WOLA in WAS traditional, with the

degree of benefit declining as the message size became larger and larger.

© 2016, IBM Corporation 44

© 2016, IBM Corporation

IBM Middleware

WOLA and CICS

Outbound - WAS traditional v. Liberty on z/08

16000

2 | ‘
0
100

: B

:

Transactions per Second
g g

g

B wastraditional vo [Liberty 16.0.0.3

1K 4K 8K

I

48

16K 32K 64K 128K
Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes
Payload Size
ferspensiiiermnelivhs, S o i il dnrs.

Liberty outperforms
traditional WAS in all
payload sizes.

The differenceislessin
smaller payload size
and is morein larger
payload size.

Here is WOLA and CICS, where the scenario is outbound from the WAS server to the CICS region. Again we have
varying message payload sizes. We see WOLA in Liberty outperforming WOLA in WAS traditional across all message

sizes, with the percent

© 2016, IBM Corporation

improvement better in the larger payload sizes.

45

IBM Middleware

Other Information for Consideration

© 2016, IBM Corporation 46

2016, 1BM Corporation IBM Middleware

Installation Overview

IBM hosted
repository

IBM Installation ’:> WAS traditional installation mount point
Manager z/0S /usr/lpp/zWebSphere/VBR55FP09 8

Command line tool for
managing installations to E Liberty installation mount point

/ Ussfile system locations /usr/lpp/zWebSphere/Liberty/V8R55FP09 8
ﬂ Downloaded

— | local repository
- For z/0S, “WAS ND” includes both WAS traditional and Liberty

They are installed separataly, and may be installed in different locations
Maintenanca is applied separately, so you may control when updates ocour

o misrg mialintzin multiple levels of each in separate fila
= VEAS tradidenal is lese Nenible when 0 comes o meding np and dosn lewels
o [ibaerky is by design Meadlle oo pou can cosily change losl of osde used by servers

Installation Manager z/0S Techdoc
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102554

The process of installing WAS traditional on z/OS and Liberty on z/OS is very similar -- both will use IBM Installation
Manager, and both produce a file system at a specified mount point.

The syntax used to install WAS traditional is similar to Liberty, but there are slight differences in terms of the repository
used for the install, and the options and features to be installed.

The two installations are separate -- separately performed, and separately maintained.

© 2016, IBM Corporation 47

IBM Middleware

MQ (or JMS messaging) = relatively easy
REST = relatively easy
11OP = more complex

____.cell__________cCollective.___ This is possible and can be accomplished

1 1 | 1

: ~ %Nﬂﬁj@ﬁ,‘ : : Liberty : Same LPAR or same Sysplex.

i ? | 1 ' Thay are separste Inzisllstions, sepaate configarations, and separate

H r | [sr i ! H ! grarted tasks. Monmal 2708 considerstions apply: awid port conflicts, swold
: i ! : ! naming conflicts, etc.

. S s 1 . . .

| E | i Purpose: dual environments during runtime cutover
- __AppServer ! i Liberty ! Avoids “big bang” cutover; allows applications to be moved one at a time.

1 e ‘ h 1 B

| . ro ' They would be managed separately

| CR||SR X | ' WAS traditional management model would be unaware of Liberty

: S / : : : collective, and Liberty collective controller would be unaware of WAS

3 A 1 ! . 1 traditional cell.

' .-AppsServer ! . Liberty !

- ! i ! Appllcatlon mtegratlon between environments is

1 ! . . .

I Rl } b i possible; complexity a function of pattern:

! i

! 1

We made this point before -- it is possible to operate both WAS traditional z/OS and Liberty z/OS in the same z/0S
environment, either on the same LPAR or the same Sysplex. The operations of the two environments are somewhat
different (as we covered earlier), so that would have to be taken into consideration. The main point here is that it is
possible; there is no technical restriction; so whether you do this or not is based on your business requirements.

Why would you do this? Because it provides a “parallel universe” approach to cutover from WAS traditional to Liberty
on z/0S. This avoids the “big bang” cutover model, which attempts to turn one environment off and immediately
move to the new. That introduces undue risk.

If you need application connectivity between the two environments, that is possible. The complexity of that is a
function of the connectivity mechanism used. For example, message queuing integration would be relatively simple as
a key point of message queuing is to de-couple different environments. Similarly, if the integration pattern if RESTful
services, then integration is relatively easy as Liberty z/0OS (or WAS Traditional z/OS) will present itself as a host:port for
the RESTful calls. The differences between WAS traditional and Liberty are hidden behind that abstraction. [IOP
integration is a bit more complex because that involves configuration to allow the lookup of the target EJB. It's
possible, it’s just not as simple as MQ or RESTful calls.

© 2016, IBM Corporation 48

2016, IBM Corporation

IBM Middleware

Liberty Collectives Overview

¥

“Replica Set” (for availability of Controller)

“Collective”
A collection of Liberty servers with some servers
designated as “controllers” and others as
“members” of the collective.

Controller Controller Controller i . i
Flexible: Join, Leave
Web Ul [> Liberty Liberty Liberty Simple XML definitions specify the collective to
Server o0 Server Server which a server will be a member. Relatively easy to
Instance Instance Instance join a collective; easy to leave and join another.
Scripting & Server clustering
y HTTPS Members can arrange into a cluster for purposes of
I ssH application availability and intelligent workload
| Secure Copy placement.
i IMX -
Rich set of management beans
e ber arbar Member For monitoring and managing the environment
Liberty Liberty Liberty AdminCenter interface
Server Server L X J Server

Instance

Instance

Instance

For web interface to collective

Available, scalable
Controllers can be arranged into a highly available
“replica set”. Designed to scale to large topology.

“Member cluster”

43

Finally, this chart provides a very high-level review of Liberty collectives.

At the very highest level, a “collective” is a grouping of Liberty servers -- on z/0S, on other platforms, or both -- that
together operate within a logical management domain. There are two main types of servers in a collective:

* Controller -- a Liberty server designated as a “controller” provides an interface for management of servers in the
collective. Through a controller you can start and stop other servers in the collective, you can transfer files to and
from those servers, you can deploy applications, and you can monitor the status of the servers.

The picture shows multiple controllers organized into a “Replica Set.” This is optional. If configured, it provides a
highly-available model where the failure of a controller is recognized by other controllers in the replica set and
management duties are assumed by a surviving member.

* Member -- a Liberty server designated as a “member” is connected to a controller through a set of commands and
updates to the server.xml file. The Controlleris then aware that the member is part of the collective, and from that
point on it can be managed through the interface provided by the controller.

This model is considerably more flexible than the WAS traditional model since servers can join and leave a collective
relatively easily, while removing a server that is part of a WAS traditional cell is far more involved.

You can create clusters of Liberty server members by updating the server.xml of each member you wish to be included
in a cluster, and that information is communicated to the controller. You can then generate a plugin-cfg.xml for
workload distribution using the HTTP server plugin.

Liberty includes a rich set of management beans (mBeans) that can be invoked to perform a variety of management
tasks. The controller makes use of these when it manages other servers; you make use of these when you use JMX to

communicate to the controller, or you use the AdminCenter feature (a graphical web based tool) to perform
management tasks.

The collective design is meant to be highly-scalable, so if you have plans to scale out to hundreds, or thousands of
servers, this model is designed to accommodate that. The WAS traditional management model was somewhat more
limited. It was able to scale to about 700 servers in a “core group” before the overhead of inter-process
communications became too great.

© 2016, IBM Corporation 49

IBM Middleware

Duree Description
May 17, 2016 | Driginal decument
Felp §, 2017 | Updated o reflect new Tumction in Likerty 2/05 [SME, WOLA and IS, SAF keyring for collectives), as well as the
additioral of a number of new perfontsnce charts.

© 2016, IBM Corporation

End of Document

50

