
© 2016, IBM Corporation 1

© 2016, IBM Corporation

This chart shows the sections of this presentation. The green arrows to the left are hyperlinks to the starting page for

the section. (When viewing this in screen show mode, or the PDF of the charts. When reading the notes pages the

chart is rendered as an image and the hyperlinks are no longer in effect.)

2

© 2016, IBM Corporation 3

© 2016, IBM Corporation

This chart is meant to be a one-page summarization of the message delivered in this presentation.

Liberty is receiving focus and investment from IBM, but that does not mean you must move off WAS traditional. The

move to Liberty should be based on business needs and an assessment of the value Liberty provides. Liberty has its

value -- most notably the smaller footprint, greater zIIP offload on z/OS, and flexibility -- but those value attributes

should be weighed against the effort to move from WAS traditional to Liberty.

Focus first on the application and assess the viability of moving them to Liberty. If the application design permits

moving to Liberty, then assess the operational considerations. If the results of the assessment suggests adoption of

Liberty is in the best interests of the business, then a move to Liberty should be considered.

Finally, it is possible to maintain both environments. It may make sense to maintain both and deploy applications to

the runtime environment best suited for the application.

4

© 2016, IBM Corporation

In this section we will provide a bit of a higher-level overview of Liberty and provide information to help you place an

evaluation of Liberty in proper context.

5

© 2016, IBM Corporation

This chart is showing a summarized timeline of the releases of WebSphere Application Server over the years. As you

can see, its roots go back well over a decade to Version 4, which was when the foundation for what we call “WAS

traditional” today was formed. Over the years new releases and versions were introduced. Then in 2012 came the

introduction of Liberty. At that point -- and continuing to this day -- we have two runtime models: WAS traditional,

which is runtime model based on the original; and Liberty, which is the focus of this presentation.

6

© 2016, IBM Corporation

For those who may not be familiar with the two runtime models, this chart is meant to provide background on how the

two manifest from a z/OS perspective.

On the left is what we now call “WAS traditional”. It is the original design going back 15 years to Version 4. On z/OS an

“application server” consists of multiple address spaces -- a control region and one or more servant regions. This

design is exclusive to z/OS; a key reason for this design is it allows WAS z/OS to take advantage of Workload Manager

(WLM) of z/OS for work classification and placement. Management of a WAS traditional environment is performed

within a “cell” (a set of servers that comprise a management domain), and “nodes” (a set of servers on an LPAR that

are logically grouped). WAS z/OS has a number of functions that take direct advantage of the z/OS operating system,

such as WLM, SAF, and cross-memory.

On the right is what we call Liberty. It manifests as a single address space on z/OS. As noted earlier, the key attributes

for Liberty are that it is lightweight (smaller memory footprint; faster startup times); composable (through

configuration you indicate what functions to load); and dynamic (most changes do not require a server restart). On

z/OS there are points of platform exploitation as well -- such as WLM, SAF, cross-memory. Further, Liberty is

developed under the “continuous development” model, which means functional updates are delivered on a more

frequent basis than was done in the past with WAS traditional. It is common to see functional updates for Liberty

delivered in the fixpack stream, which has a quarterly release cycle.

Both WAS traditional and Liberty fall under the “WebSphere Application Server” umbrella, and on z/OS both are

delivered under the same licensing entitlement. This creates some confusion about the role of each, which is why a

positioning discussion -- such as this paper provides -- is needed.

7

© 2016, IBM Corporation

You may wonder why Liberty came along at all. This chart helps explain that.

The creation of Liberty was in response to specific issues related to WAS traditional. This chart summarizes those on

the left, and then indicating on the right how Liberty addressed the issues:

• Footprint -- WAS traditional was perceived as consuming too much memory. Liberty addresses this by being

“composable”; that is, you indicate through configuration what functions to load, thus reducing the footprint of

Liberty to what is needed for your application.

• Restarts -- WAS traditional required application restarts and server restarts for many changes. Liberty addresses

this by having a dynamic update model. With Liberty most application and configuration changes can be picked up

and made available without a server restart.

• Management -- WAS traditional has a management model based on a fixed design of “cells” and “nodes.” It has

served well over the last 15 years, but its design limits flexible changes to the topology. Further, the inter-server

communication model limits the scaling of a WAS cell (more precisely, the WAS “core group”) to about 700 or so

servers. Liberty’s management model -- called “collectives” -- is designed to be more flexible and better scaling.

That summarizes the “why” of Liberty being created by IBM. It’s a story of the technical environment changing over

time and a new application server design being created to address it.

8

© 2016, IBM Corporation

When discussing WebSphere Application Server, it’s worth noting the terminology that’s used to refer to the different

offerings that are available.

• Liberty Core -- this is not available on z/OS; it is only available on distributed platforms. This is Liberty only (WAS

traditional is not part of this offering), and it is a subset of Liberty. This is intended to be widely available, easily

downloaded, and easy to acquire and use.

• WAS Base -- this is also not available on z/OS; it is only available on distributed platforms. This includes both WAS

traditional and Liberty. The WAS traditional packaged with this offering is a subset of the full WAS traditional

offered with the “WAS ND” packaging. The Liberty packaged with this offering includes Liberty Core and adds Java

messaging, Web Services and NoSQL DB. But this Liberty is still a subset of the Liberty offered in the “WAS ND”

packaging.

• WAS ND -- this is available on z/OS, as well as other platforms. Consider this the “complete” WAS ... both WAS

traditional and Liberty.

As you look at this chart and go left to right, you see offerings that increase in qualities of service and enhanced

management, and increase in numbers of servers and concurrent users.

For this presentation we are focusing on the far right ... WAS ND. That is what is offered for z/OS.

9

© 2016, IBM Corporation

Here we take a look at the differences in the programming interfaces (APIs) between Liberty and WAS traditional, both

at first (back in the 8.5.0.0 days) and today (8.5.5.9). This is a story of the API gap being fairly wide initially, but mostly

closed at this point.

On the left side of this chart is the “API gap” as it existed between Liberty and WAS traditional when Liberty was first

introduced back in the 8.5.0.0 time frame. The gap was fairly wide at that point. Liberty had the ability to host web

applications only. WAS traditional had that plus Java EE and other WAS-specific APIs. At that point Liberty was clearly

well short of WAS traditional, and at that point Liberty was mainly seen as a development platform with limited

capabilities.

Fast forward to today (that is, the 8.5.5.9 time frame) and we see that the gap is mostly closed. Now Liberty and WAS

traditional share the bottom four “blocks” in that stack diagram, with only the “Full WAS APIs” and “Deprecated J2EE”

APIs existing in WAS traditional but not Liberty. This means application compatibility between Liberty and WAS

traditional is much greater now than it was initially. The ability to move applications from WAS traditional to Liberty is

greater now than it was before.

Note: and the reverse -- it is now easier to use Liberty as a development platform with WAS traditional as the target for

production deployment. In the past, that worked if the application was just a web application. But now with Liberty

and WAS traditional having more APIs in common, application movement from Liberty to WAS traditional is also a

consideration.

10

© 2016, IBM Corporation

There can be a financial incentive to going to Liberty on z/OS based on both the zIIP offload and the way one-time

pricing is charged. Check with your IBM sales representative to discuss pricing options.

11

© 2016, IBM Corporation

With respect to the management of the runtime, the story here is again one of a rather wide gap initially, but the gap

closing as time went on and Liberty was developed further.

Note: this is a little more difficult to represent as a one-to-one comparison because the management models are

different. So the graph above is meant to represent a high-level illustration of functional capability. It is not a direct

comparison of feature-for-feature and function-for-function.

The WAS traditional model is based on a “Deployment Manager” (special purpose application server) hosting the

administrative function, with that Deployment Manager “owning” (managing) all the nodes and servers in the “cell.”

All administrative functions are performed through the Admin Console (GUI interface) or WSADMIN (the scripting

interface). That includes configuration changes and application deployments. That administrative model works well. It

is mature and very stable.

Liberty, on the other hand, has a different management model design. It is based on “collectives,” which is a collection

of Liberty servers arranged into a “controller” and “member” arrangement. A server designated as a controller

assumes the role of being a management interface point. Servers designated as members are managed by the

controller. The management model is more flexible than the WAS traditional model in that servers can come and go

from collectives far more easily than they could from the WAS traditional framework. The Liberty collectives

framework also scales to much higher numbers of servers. Whether that’s important to you is a function of how large

a topology you have or are planning. (WAS traditional had a scale limit of about 700 servers, while Liberty collectives

can scale to the 10,000+ number.)

Initially the Liberty management model was very rudimentary. But as the releases of Liberty have come out, the model

has matured more and more. At this point in time the development focus is on Liberty and the Liberty management

model. The WAS traditional management model works well, but has far less new function focus than Liberty enjoys.

12

© 2016, IBM Corporation

We have a section on “operational considerations,” which is a broad topic covering many disciplines. When we speak

of that topic -- particularly with respect to z/OS -- we are referring to the types of things listed on the chart.

For Liberty, some of those things are similar in approach and execution to WAS traditional. For example, the “product

installation” bullet implies IBM Installation Manager (IM) for both, and except for disk space and some install syntax

differences, the installation process is largely the same.

For other things -- for example, backup and restore -- Liberty is actually a simpler model because of the simpler

configuration model. Other things -- for example, usage monitoring and chargeback -- may for WAS traditional today

be done with SMF 120.9 records, and Liberty does not have those.

When considering a move to Liberty from WAS traditional, the evaluation and discussion centers around the

operational processes you have today, how deeply you are invested in them from a business perspective, and whether

a transition to Liberty can be done within the context of your existing process and skills.

13

© 2016, IBM Corporation

This chart is providing one of those oft-used “quadrant” structures to help you think about where you operate today

with WAS traditional. The quadrant has two axis:

• Application dependency (vertical axis) -- this is a relative measure of how tied your application are to the WAS

traditional API model, and to the WAS traditional CR/SR model on z/OS. Lower on the axis means your applications

are less dependent, and thus moving the application to Liberty would incur less resistance. Higher on the axis

means the applications have some dependencies, and thus moving to Liberty would entail inspection of the

applications and potentially some re-engineering.

• Operational dependency (horizontal axis) -- this is a relative measure of how tied you are to the operational

practices you have in place for WAS traditional. The further to the left you call the less dependency you have; the

further to the right the more dependency you have. For example, if you have built important processes around the

SMF 120.9 record, then it implies you fall further to the right on the scale (because Liberty does not cut SMF 120.9

records). Similarly, if you have a large inventory of WSADMIN scripts to automate WAS administration, then it

suggests falling further to the right as the WSADMIN object model is not part of Liberty.

A quadrant is formed by dividing both axis in half. Thus:

• Lower-left (low application / low operational) -- based on your applications and operational practices, a move to

Liberty should be relatively easy. Therefore, Liberty can be considered for both new and existing workloads.

• Upper-right (high application / high operational) -- you have a high degree of dependency on WAS traditional for

both applications and operations. If you fall in this quadrant then a move to Liberty may be a bit more involved.

You may wish to consider leaving existing workload on WAS traditional, and perhaps consider Liberty for new

workloads if having two runtime models is acceptable.

• Upper-left (high application / lower operational) -- operationally you could move to Liberty, but the applications

have some dependencies, so that implies some inspection and potentially some rewrite. You would have to look at

this more closely to see the nature of the application dependencies and what would be involved to make them

capable of moving to Liberty.

• Lower-right (low application / high operational) -- the applications can move, but you have a lot invested in the

operational aspects of WAS traditional. This suggests maintaining WAS traditional and perhaps looking to Liberty

for new workloads where the operational practices can be accommodated.

The quadrant is simply a tool to consider where you operate, and what options you may have from there.

14

© 2016, IBM Corporation

In this section we’ll take a closer look at the considerations around moving applications from WAS traditional to

Liberty.

15

© 2016, IBM Corporation

Earlier we showed you this picture with the “API Gap” for 8.5.5.9 between Liberty and WAS traditional. Earlier we did

not provide detail, but here we do. The focus is on the two yellow boxes -- “Full WAS APIs” and “Deprecated J2EE.”

• Full WAS APIs -- these are APIs above the Java EE specification. They exist in WAS traditional but not in Liberty,

and if an application makes use of these APIs the application would not function properly if moved to Liberty.

• Deprecated J2EE -- these are APIs that have since been deprecated by the standards bodies but are not yet

removed. They are in WAS traditional but not Liberty. It’s possible you have applications that still make use of the

deprecated APIs. The same issue arises here as with the full WAS APIs -- if an application is dependent on the APIs

being present, then moving the application to Liberty will result in errors.

Note: in a few charts we will point you to a tool that will scan application binaries and produce a report on the

suitability of moving an application to Liberty. It looks at the APIs used and reports where compatibility with Liberty is

present and where issues arise.

16

© 2016, IBM Corporation

With respect to applications, there are considerations beyond the APIs. They are:

• Time horizon -- if an application is currently hosted in WAS traditional, and you have plans to sunset the application

into the near future, then going through the effort to move the application may not be worth it. Better in that case

to leave the application where it is and let it sunset. Applications with longer time horizons may be worth any effort

to move to Liberty, based on your evaluation of the overall value to the business of moving the application.

• Value of further investment -- let’s say you have an application that has a longer time horizon, but moving it would

imply some rewrite. The question here is whether the application’s value to the business warrants the further

investment in the application. Applications that are central to the business mission would very likely be worth the

effort (provided the overall evaluation suggests a move to Liberty); applications that are less central may not.

• Deployment environments -- this consideration is interesting in light of some of the new developments around

cloud and container environments. If the vision you have for an application is that it be highly-flexible with regard

to deploying into IaaS cloud, or Bluemix, or Docker, then you may wish to take a good look at Liberty because it

tends to lend itself more easily to those environments. (WAS traditional can be deployed into those environments.

It’s just that Liberty’s simpler configuration model makes deployment even easier.)

So the exercise is this -- take a look at the application API usage, and take a look at these broader considerations, then

determine how well your applications lend themselves to being moved to Liberty. Then, after you’ve gone through the

operational considerations (next section), think about where you fall on that “quadrant” chart. That will help you

determine the path you will take when considering WAS traditional and Liberty.

17

© 2016, IBM Corporation

The “Migration Toolkit for Application Binaries” is a utility that scans your applications and reports on what is seen in

the application and what aspects of the application may require update to run on Liberty. The tool is free of charge

and is downloadable from the URL shown in the chart.

18

© 2016, IBM Corporation

As we close out this section, let’s touch on a final few points about application compatibility between WAS traditional

and Liberty, particularly on z/OS:

• When moving an application from Liberty to WAS traditional z/OS, the move should be relatively seamless because

the “API Gap” we spoke of earlier showed Liberty being on the lower end of the gap. But that’s not to say the

move is certain to be seamless. Two things to keep in mind -- (1) Liberty now has Java EE 7 and WAS traditional

does not yet have that. So an application written to take advantage of specific Java EE 7 APIs will find those APIs

are not present in WAS traditional (which is still at Java EE 6). And (2), WAS traditional z/OS operates with the

multi-JVM CR/SR model, and if you operate the WAS traditional z/OS server with 2 or more servant regions you are

creating what is in effect a cluster of servers. If the application creates singletons and expects to always be in a

single JVM, then you may experience problems with a multi-SR server on z/OS.

• When moving from WAS traditional z/OS to Liberty, a bit more care needs to be taken. First, there is the issue of

the “API Gap,” which the “Migration Toolkit for Application Binaries” can help you with. That tool will scan your

application and report on what technology is in use and what methods to inspect more closely for compatibility.

Also, if your application runs in a multi-SR WAS traditional z/OS region today and is making use of “session

replication” between the SR regions, then moving to Liberty may introduce differences in behavior. Liberty has the

ability to persist session information, but it does not do so with the same “session replication” mechanism used by

WAS traditional. If session information is created and persistence is needed, that would need to be configured

into the Liberty server and tested to make sure the application operates as expected.

19

© 2016, IBM Corporation 20

© 2016, IBM Corporation

Earlier we introduced the topic of “Operational Considerations” and said it was a broad topic with many disciplines.

Here we are re-iterating that point by organizing some of the tasks into logical groups.

The point of this chart is to start the thought process around the present-day operational processes and how operating

Liberty would apply. As mentioned earlier, some of the tasks are very similar; some are different.

21

© 2016, IBM Corporation

What follows is a set of charts that show a table comparing Liberty with WAS traditional across a set of operational

attributes or tasks. The circles off to the right indicate similarity (green dot) or some difference (yellow dot).

Again, the objective here is to provide a discussion framework in which the very broad topic of operational

considerations can be discussed.

22

© 2016, IBM Corporation

Here is the first table in a set of such tables that compares operational tasks.

23

© 2016, IBM Corporation

More operational considerations ...

24

© 2016, IBM Corporation

And still more operational considerations ...

25

© 2016, IBM Corporation

The first of two security considerations tables.

26

© 2016, IBM Corporation

More security considerations.

27

© 2016, IBM Corporation

This chart highlights the degree to which Liberty and WAS traditional on z/OS is capable of taking advantage of the

z/OS platform. Both are capable of exploitation, but WAS traditional -- being a product that’s been around longer --

has a deeper set of such things. But Liberty has a set as well, and this chart outlines what they are.

28

© 2016, IBM Corporation

This chart summarizes the comparison tables we just went through with a specific focus on z/OS.

29

© 2016, IBM Corporation

In this section we will walk through a set of charts that compares the performance of WAS traditional with Liberty.

Note: these performance measurements were conducted in a controlled environment under very specific conditions.

Your results may vary. These results are not a promise of performance results.

30

© 2016, IBM Corporation

This chart shows four comparison in two graphics: startup time, application deployment time, memory footprint, and

disk size.

• Startup time (left side of chart, left bar graph) -- here we see that Liberty outperforms WAS traditional by quite a

margin. The time for Liberty (5.5 seconds) is 32% of the time of WAS traditional (16.8 seconds). Or stated another

way, Liberty is 68% faster in server startup than WAS traditional.

• Application deployment time (left side of chart, right bar graph) -- Liberty’s time to deploy an application was only

36% the time required by WAS traditional.

• Memory footprint (right side of chart, left bar graph) -- the bars in this graph are relatively small because the left

axis is determined by the “disk size” bars in the chart. Still, if we look at the numbers we see that the memory

footprint of Liberty (126.1 MB) is half the size (47%) of the 269.3 MB consumed by WAS traditional.

• Disk size (right side of chart, right bar graph) -- here the difference is quite stark. The WAS traditional disk

footprint was 3,430 MB compared to 338 MB for Liberty. Liberty’s size is a mere 10% that of WAS traditional.

31

© 2016, IBM Corporation

This chart shows a set of throughput measurements for different applications.

Note: this is for distributed platforms. This is not z/OS. The z/OS throughput chart comes next.

The left-most bar chart is for the DayTrader benchmark application, which is an EJB application with DB2-backed data

persistence. The middle chart is the SOABench application, which is a SOAP/WSDL web services benchmark

application. And the right-most chart is using the JMS Prims application to measure messaging throughput.

What we see is the throughput for Liberty vs. WAS traditional is very close to one another. The largest difference was

seen in the JMS throughput test for non-persistent messaging, where Liberty achieved 108% the throughput of WAS

traditional (called “Full Profile” on these charts).

The message here is that moving an application to Liberty does not imply any loss of throughput.

32

© 2016, IBM Corporation

This chart is showing the throughput achieved for the DayTrader application with Liberty and WAS traditional on z/OS.

Notes:

• The distributed platform graph on the left is just for reference. That picture comes from the previous chart.

• The performance numbers for the z/OS test (right side of the chart) are normalized, so a direct comparison of the

vertical axis of that picture with the picture on the left should not be attempted. What normalized means is the test

was performed on z/OS WAS traditional, and the throughput achieved was equated with the number 100. The

throughput for Liberty (which was higher) was made proportional to the “100” set for WAS traditional. Therefore,

the left axis of the picture on the right is not the nominal throughput achieved, but a normalized representation of

the throughput achieve, Liberty vs. WAS traditional.

The reason Liberty z/OS had higher throughput is because of the design of Liberty z/OS compared to the design of WAS

traditional on z/OS. On z/OS, WAS traditional has the multi-JVM structure with controllers and servants. That implies a

longer code-path through the CR, queuing with WLM, and finally dispatching to the SR. Liberty z/OS -- a single JVM

model -- has a shorter code path to achieve dispatching of the work to a thread for execution.

WAS traditional on the distributed platforms is also a single JVM model, which is why the WAS traditional vs. Liberty on

those platforms showed comparable results.

WAS traditional z/OS and its CR/SR model provides some useful benefits with regard to queuing and dispatching to

multiple JVMs. But that model comes with a “cost” in terms of throughput, and the picture on the right-side of the

chart above illustrates the throughput “cost”.

33

© 2016, IBM Corporation

This chart is showing a set of performance result comparing several different things, so a few moments explaining the

chart is needed:

• The chart is divided with the bold dashed vertical line; on the left is a set of performance runs on the IBM zEC12

hardware, and on the right is a set of performance runs on the IBM z13. The z13 hardware is newer, faster, and has

instructions available for exploitation, which Java 8 takes advantage of.

• Multiple levels of Java are being compared here. The key comparison is between Java 7 and Java 8. The reason that

is key is because Java 8 has two major areas of improvement over Java 7 -- (1) more efficient JVM and JIT

processing, and (2) direct exploitation of new instructions on the z13 hardware, which makes JIT processing even

more efficient.

• z13 SMT (simultaneous multi-threading) capability, which enhances performance when the Java SDK takes

advantage of the SMT feature present on the hardware.

The chart is augmented with arrows and numbered blocks to draw your attention to the performance improvements

and where they come from:

1. The comparison here is between Java 7 and Java 8 on the zEC12 machine. So the hardware stays the same, but the

Java SDK level changes. This is the value of Java 8. This represents the general performance improvements made

to the JVM and JIT processing. Since this is on the zEC12, the newer instructions of the z13 are not present, so that

variable is not part of this performance benefit illustration. We see a 36% improvement.

2. The comparison here is between Java8 on the zEC12 versus Java 8 on the z13. So the Java SDK level stays the same

but the hardware changes. Two things are going on here: (a) the Java 8 SDK recognizes it is on a z13 and it knows

there are instructions on the chip that aid the JIT processing, so it takes advantage of those instructions

automatically; and (b) the z13 hardware is faster and with larger cache, so anything that shows up on the z13 will

tend to run faster. We see a 33% improvement here.

3. The comparison here is Java 7 vs. Java 8 on the z13. This represents the general improvements in the Java 8 JVM

and JIT processing, as well as the specific exploitation of the z13 instructions by the Java 8 JIT. 43% improvement.

4. The comparison here is no SMT vs. SMT where the Java level is the same (Java 8) and the hardware is the same

(z13). We see a 30% improvement.

5. Finally, if we combine all the changes of comparisons 1 through 4 we derive an “overall” performance benefit. This

includes the benefits of the Java improvements, the hardware improvements, and the SMT processing. Here we

see a 136% improvement, which is a more than doubling of the throughput.

34

© 2016, IBM Corporation

One of the new functions added to Liberty z/OS in 16.0.0.3 was "Asynchronous I/O." This function is particularly useful

when large numbers of concurrent users are engaging with a server. To measure the benefits of this we compared

Liberty z/OS against Liberty z/OS -- the same 16.0.0.3 level -- with the default "Network I/O" vs. the new Asynchronous

I/O function enabled. We scaled up from 2,000 concurrent users to 4,000, then 8,000.

The chart has three key points we wish to draw your attention to:

1. There is an increase in throughput by switching on Asynchronous I/O. The percent increase is a function of the

number of concurrent users. We saw 30%+ improvement across the three levels of concurrent users.

2. Notice that the Network I/O function does not really scale up as we increase the concurrent users. It's true that it

did not degrade either, but the throughput was essentially flat.

3. However, we did see a slight trend upwards in the throughput when using Asynch I/O, about a 6.5% increase from

2,000 concurrent users to 8,000 concurrent users. That shows that not only is this function beneficial when

compared to Network I/O, but it also works well as we scale up the concurrent users.

35

© 2016, IBM Corporation 36

This chart is showing the CPU time for ten Liberty servers at idle when file monitoring is one compared to when file

monitoring is turned off.

Note: file monitoring is what allows Liberty to detect when a configuration or application has been changed. By default

the file monitoring is set to occur every ½ second, which is wonderful for a development environment, but it does tend

to add up over time in terms of CPU used. We anticipate most production environments will turn file monitoring off as

a means of better controlling updates to the environment. Doing this also implies less CPU because the servers are

polling against the file system looking for changes.

This chart has two lines -- the upper line represents 10 Liberty z/OS servers with the default 500ms polling interval for

file monitoring; the lower line representing the same 10 Liberty z/OS servers with the file monitoring disabled. The

servers ran for four hours, and we captured the accumulated CPU for each hour at the hour marker.

The key point is what's illustrated by the two horizontal dashed lines and the little green triangle showing the delta

between an approximate 11 seconds/hour CPU time with file monitoring vs. approximately 3 seconds/hour when file

monitoring is turned off.

© 2016, IBM Corporation

Here is another chart where several things are going on, so we’ve added arrows and numbers to draw your eye to the

key performance comparisons we wish to highlight:

1. This compares the elapsed time difference between when Java 8 with -Xtune:virt set and Java 8 where that

property is not set. The starting “dot” is where Java 8 with Xtune:virt reaches steady-state, and the second “dot”

is where the Java 8 without Xtune:virt reaches steady state. The startup time is improved by approximately 88%.

2. This compares the elapsed time difference between when Java 8 without -Xtune:virt reaches steady-state and

when Java 7.1 without -Xtune:virt reaches steady-state. That’s about a 22% improvement.

3. This compares the throughput difference between Java 7.1 and Java 8 on a zEC12 with -Xtune:virt set. We see

the general Java 8 improvements we saw on the previous chart.

37

© 2016, IBM Corporation

This table is comparing the startup footprint of a minimal WAS traditional z/OS ND cell against a minimal Liberty z/OS

collective. The comparison is not apples-to-apples because the minimal WAS z/OS ND cell has 7 address spaces while

the minimal Liberty z/OS collective has just three. But therein lies the benefit -- Liberty z/OS, but it’s single JVM model

and the agent-less management model provides an opportunity to reduce the address space, memory, and CPU

footprint of the server topology.

The first and most direct comparison is the “total” row at the bottom. There we see that the WAS z/OS ND cell took 83

CPU seconds, 169 elapsed seconds, and 1925MB of memory; the Liberty collective 21 seconds, 6 seconds, and 432MB.

If you wished to make a more granular comparison, then add the CR and SR values for an ND server and compare

against the Liberty member; or the DMGR CR and SR numbers and compare against the Liberty controller. The WAS

z/OS ND Node Agent has no direct comparison against Liberty since the Liberty collective model is agentless.

38

© 2016, IBM Corporation

Here we're comparing WAS traditional against Liberty with three measurements: CPU time to initialize the servers,

elapsed time to initialize the servers, and elapsed time to shut down the servers. The gray vertical line separates WAS

traditional (left side) from Liberty (right side).

WAS traditional has a different management model from Liberty. To create a roughly equivalent setup, we had a WAS

traditional Network Deployment configuration with a Deployment Manager, a Node Agent, and 10 application servers.

On the Liberty side we had a Collective Controller and 10 Liberty servers.

As you can see, there's a striking difference between the left side of the chart and the right. That's the nature of

Liberty and its lighter-weight model. It's also the nature of Liberty with its single JVM model vs. the multi-JVM model

of WAS traditional. The left side of this chart implied 23 address spaces --two for the Deployment Manager, one for

the Node Agent, and 10 x 2 = 20 for the ten application servers. The Liberty side of the chart implied 11 address spaces

-- one for the Collective Controller, and one each for the 10 servers.

39

© 2016, IBM Corporation

Another WAS traditional vs. Liberty chart, this time comparing the memory footprint of the same setup as the previous

chart:

• WAS traditional -- Deployment Manager (2 address spaces), Node Agent (1 address space), and ten servers with a

controller and servant for each (20 address spaces).

• Liberty -- Collective Controller (1 address space), and ten servers (10 address spaces).

The difference is due to the fact WAS traditional tends to load the full Java EE container environment while Liberty

does not. The default heaps are roughly the same, but the expansion of the heaps to accommodate the loading of the

function implies WAS traditional takes up a larger footprint than does Liberty.

40

© 2016, IBM Corporation

Note: this is a different measurement from the "Idle Server Time" we saw earlier. That was comparing Liberty vs.

Liberty with file monitoring on vs. off. This is WAS traditional vs. Liberty.

This is our roughly equivalent 10 application server environments, with WAS traditional on the left and Liberty on the

right. We're capturing the CPU time for the idle servers for a given hour of elapsed wall time. The Liberty server was

set to file monitoring off to match WAS traditional's lack of file monitoring. The results are shown in the chart. If we

focus just on the application servers, we see the 10 WAS traditional servers (consisting of a CR and an SR) consumed

approximately 120 CPU seconds per hour, while the 10 Liberty servers consumed 39 CPU seconds.

Note: when a Liberty server is part of a collective, there is some communication with the controller, even at idle.

Earlier we saw a Liberty server at idle averaging 3 CPU seconds per hour, but that test was for 10 servers not part of a

collective. This is 10 servers that are part of a collective. We see a bit more (0.9 CPU seconds / hour average)

associated with collective communication.

41

© 2016, IBM Corporation

Now we turn to some WebSphere Optimized Local Adapter (WOLA) comparisons. We're comparing WOLA in WAS

traditional against WOLA in Liberty; and further, two levels of Liberty. We have the two levels of Liberty because with

16.0.0.2 improvements were added to the Liberty WOLA support to make it more efficient.

The chart shows five groups of tests based on payload size, with each group comparing WAS traditional V9 against

Liberty 8.5.5.7 and Liberty 16.0.0.2. This test was a COBOL batch program processing inbound requests against the

Java code running in the WAS server.

Let's focus on the 4000 byte payload and note the two highlighted differences. The first is the difference between

WOLA in WAS traditional vs. WOLA in Liberty at the 8.5.5.7 level. Here we see a considerable throughput

enhancement with Liberty, and that's due mostly to the generally more efficient design of WOLA and Liberty compared

to WOLA and WAS traditional.

Note: a good portion of that is due to the controller/servant design of WAS traditional. WOLA communications go first

to the CR, then to the WLM queue, then dispatched to the SR where the work is processed. The response flows back

from the SR to the CR, then across WOLA to the COBOL program. Liberty has one JVM, so the whole CR-to-WLM-to-SR

flow is eliminated. It's WOLA straight into the JVM that hosts the target Java program.

Now look at the second jump in the middle of the chart. That's WOLA Liberty 8.5.5.7 vs. WOLA Liberty 16.0.0.2. This

illustrates the benefit of the enhancements for WOLA put into the 16.0.0.2 release of Liberty.

42

© 2016, IBM Corporation 43

Let's turn our attention to WOLA and IMS. The IMS support for WOLA Liberty came in the 16.0.0.3 release of Liberty

z/OS, so that's the level we're using here. The comparison is WAS traditional vs. Liberty. The scenario is inbound

processing; that is, a program in IMS calling across the ESAF interface and WOLA into the WAS server.

Note: this chart has the WAS traditional throughput numbers normalized to a baseline 100. That's why every payload

size bar for WAS traditional is showing '100' for its requests per second. This helps illustrate the relative performance

benefit of WOLA and Liberty for IMS processing as the payload size increases.

What we see is that for very small message sizes the performance advantage of Liberty WOLA is relatively large. The

reason is because with a smaller message size there is more processing relative to payload to get the messages through

the CR/SR structure of WAS traditional compared to Liberty. Said another way, WAS traditional is less effective with

smaller message size "chatty" communications than is Liberty. Once we get up into the 8K message size and above, we

see that WOLA Liberty tends to perform between 40% and 50% better.

© 2016, IBM Corporation 44

Here is WOLA and IMS for Liberty where the scenario is outbound; that is, a Java program in WAS is talking over WOLA

to an IMS region where a target program receives the call. Again, we increase the message size and compare the

throughput WAS traditional vs. Liberty.

Note: when the scenario is outbound the processing in WAS traditional implies less processing overhead than when the

message comes inbound to WAS. The reason is because when going outbound, the Java program in the servant does

not have to go through the WLM queueing mechanism. The message is cross-memory retrieved by the controller from

the servant and passed over the WOLA interface. So the efficiency delta is not nearly as great for outbound as we saw

for inbound.

What we see in this case is a general benefit to WOLA in Liberty compared to WOLA in WAS traditional, with the

degree of benefit declining as the message size became larger and larger.

© 2016, IBM Corporation 45

Here is WOLA and CICS, where the scenario is outbound from the WAS server to the CICS region. Again we have

varying message payload sizes. We see WOLA in Liberty outperforming WOLA in WAS traditional across all message

sizes, with the percent improvement better in the larger payload sizes.

© 2016, IBM Corporation 46

© 2016, IBM Corporation

The process of installing WAS traditional on z/OS and Liberty on z/OS is very similar -- both will use IBM Installation

Manager, and both produce a file system at a specified mount point.

The syntax used to install WAS traditional is similar to Liberty, but there are slight differences in terms of the repository

used for the install, and the options and features to be installed.

The two installations are separate -- separately performed, and separately maintained.

47

© 2016, IBM Corporation

We made this point before -- it is possible to operate both WAS traditional z/OS and Liberty z/OS in the same z/OS

environment, either on the same LPAR or the same Sysplex. The operations of the two environments are somewhat

different (as we covered earlier), so that would have to be taken into consideration. The main point here is that it is

possible; there is no technical restriction; so whether you do this or not is based on your business requirements.

Why would you do this? Because it provides a “parallel universe” approach to cutover from WAS traditional to Liberty

on z/OS. This avoids the “big bang” cutover model, which attempts to turn one environment off and immediately

move to the new. That introduces undue risk.

If you need application connectivity between the two environments, that is possible. The complexity of that is a

function of the connectivity mechanism used. For example, message queuing integration would be relatively simple as

a key point of message queuing is to de-couple different environments. Similarly, if the integration pattern if RESTful

services, then integration is relatively easy as Liberty z/OS (or WAS Traditional z/OS) will present itself as a host:port for

the RESTful calls. The differences between WAS traditional and Liberty are hidden behind that abstraction. IIOP

integration is a bit more complex because that involves configuration to allow the lookup of the target EJB. It’s

possible, it’s just not as simple as MQ or RESTful calls.

48

© 2016, IBM Corporation

Finally, this chart provides a very high-level review of Liberty collectives.

At the very highest level, a “collective” is a grouping of Liberty servers -- on z/OS, on other platforms, or both -- that

together operate within a logical management domain. There are two main types of servers in a collective:

• Controller -- a Liberty server designated as a “controller” provides an interface for management of servers in the

collective. Through a controller you can start and stop other servers in the collective, you can transfer files to and

from those servers, you can deploy applications, and you can monitor the status of the servers.

The picture shows multiple controllers organized into a “Replica Set.” This is optional. If configured, it provides a

highly-available model where the failure of a controller is recognized by other controllers in the replica set and

management duties are assumed by a surviving member.

• Member -- a Liberty server designated as a “member” is connected to a controller through a set of commands and

updates to the server.xml file. The Controller is then aware that the member is part of the collective, and from that

point on it can be managed through the interface provided by the controller.

This model is considerably more flexible than the WAS traditional model since servers can join and leave a collective

relatively easily, while removing a server that is part of a WAS traditional cell is far more involved.

You can create clusters of Liberty server members by updating the server.xml of each member you wish to be included

in a cluster, and that information is communicated to the controller. You can then generate a plugin-cfg.xml for

workload distribution using the HTTP server plugin.

Liberty includes a rich set of management beans (mBeans) that can be invoked to perform a variety of management

tasks. The controller makes use of these when it manages other servers; you make use of these when you use JMX to

communicate to the controller, or you use the AdminCenter feature (a graphical web based tool) to perform

management tasks.

The collective design is meant to be highly-scalable, so if you have plans to scale out to hundreds, or thousands of

servers, this model is designed to accommodate that. The WAS traditional management model was somewhat more

limited. It was able to scale to about 700 servers in a “core group” before the overhead of inter-process

communications became too great.

49

© 2016, IBM Corporation 50

End of Document

