
© 2016, IBM Corporation

1

WebSphere Application Server z/OS

WAS traditional
z/OS

WAS Liberty
z/OS

Deciding Which to Use

The answer may well be “both” ... the intent of this material is to help you understand and weigh the considerations of both against the
needs of your application serving architecture. Utilizing both WAS traditional and Liberty is a pattern that may fit your needs.

© 2016, IBM Corporation

2

Executive Overview
A one-chart summary of the usage considerations presented in the document

Setting Context
Establishing terminology and providing background on the evolution over time of each runtime models

Application Considerations
Exploring the application interface considerations of each runtime model

Operational Considerations
Exploring the runtime operational considerations of each runtime model

Performance Considerations
Exploring the performance profile of each runtime model

Other Information for Consideration
A collection of other information you may find useful when making this decision

Hyperlink

© 2016, IBM Corporation

3

Executive Overview

© 2016, IBM Corporation

4

Executive Summary

Liberty is the newer runtime model and has considerable IBM focus and investment

WAS traditional z/OS continues to be a viable platform with IBM support into future

Liberty z/OS benefits include: smaller memory footprint, greater zIIP offload, more
flexible configuration and application deployment

If there is a business driver to consider moving to Liberty, then:

• Determine the viability of moving the applications to Liberty

• Assess the operational differences and determine if any value is diminished by moving

• If value exceeds cost, then it’s a net benefit to the business and a move should be considered

• If cost exceeds value, then maintain WAS traditional for those applications

• Maintaining both environments is possible and would provide a “best of both worlds” environment

© 2016, IBM Corporation

5

Setting Context

© 2016, IBM Corporation

6

A Brief Historical Timeline ...

Version 4 - Original on z/OS (not counting V3.5 servlet plugin to HTTP Server)

Version 5, 5.1 - Re-architected from V4; continued functional enhancements

Version 6 - Application specs come more into line across platforms

Version 6.1 - Application specs align across platforms, as does the release schedule

Version 7 - Considerable z/OS-exploitation function (including WOLA)

Version 8 - Installation Manager used to install WAS

Version 8.5

~1999

~2012

“WAS traditional” (continuation of previous architecture)

“WAS Liberty” (the ‘new’ runtime model for WAS)

© 2016, IBM Corporation

7

“WAS traditional” and “Liberty”

CR SR

AppServer

WAS traditional z/OS Liberty z/OS

• The original WAS, going back 15 years to Version 4

• On z/OS it consisted of “controllers” and “servants”

• It was organized into “nodes” and “cells”

• Specific function to exploit z/OS capabilities

• Considerable production-hardened investment here

Server

“Multi-JVM model”

• First introduced in V8.5.0.0 (2012) all platforms

• Single JVM server model (no CR/SR)

• Key attributes: lightweight, composable, dynamic

• Has z/OS exploitation functions

• Under “continuous development” = frequent updates

Both fall under “WebSphere Application Server” umbrella, but are not the same thing
(Which is why this positioning discussion is needed)

© 2016, IBM Corporation

8

What was Behind Creation of Liberty?

WAS traditional ...

... loaded most functions even if
applications did not require them

... required application and server
restarts for most changes

... Has a mature, but somewhat
inflexible management model

WAS Liberty ...

... is composable, allowing for customized
function enablement

... is dynamic, allowing for application and
configuration changes without restarts

... has a management model* that is, by
design, flexible and highly scalable

WAS traditional has its architectural roots going back 15 years. Times change,
and a more flexible and dynamic server model was needed. That is Liberty.

* Called “Collectives”. More on that later in the presentation.

© 2016, IBM Corporation

9

Understanding WAS Product Terminology

Java EE Web Profile
Subset of Liberty

Liberty Base
Liberty Core, plus ...

Java Messaging
Web Services

NoSQL DB

Full Java EE
Distributed Transactions

Advanced Security

WAS Base, plus ...
High Availability

Intelligent Management
High Scalability

Liberty
Liberty Base, plus ...

Enterprise Class Clustering
Collectives Management

Increasing Qualities of Service and Enhanced Management

Increasing Number of Servers and Concurrent Users

The WAS ND
edition is the
only one that
is supported

on z/OS

Therefore, that
is the focus of
this documentLiberty Core

WAS Base WAS NDIt is worth understanding
this to reduce any confusion
when these “editions” are
referred to in conversation

or documentation.

© 2016, IBM Corporation

10

Differences in the Application Programming Interface (APIs)

Web Application

Java EE

Full Java EE*

Common WAS

Full WAS APIs

Deprecated J2EE

Web Application Web Application

Java EE

Full Java EE*

Common WAS

Full WAS APIs

Deprecated J2EE

Web Application

Java EE

Full Java EE*

Common WASAPI Gap

API Gap

WAS Liberty WAS traditional WAS Liberty WAS traditional

8.5.0.0 8.5.5.9

Initially the gap was large, and some existing WAS traditional applications could not
run on Liberty. Now, many (if not most) can run on Liberty with little or no changes.
* For Liberty: partial Java EE 6, full Java EE 7. For WAS traditional: Full Java EE 6, Full Java EE 7 in beta

© 2016, IBM Corporation

11

Greater zIIP Offload and Lower Cost

CR SR

AppServer

WAS traditional z/OS Liberty z/OS

Server

~ 80% or perhaps higher offload ~ 90% or perhaps higher offload

Many “it depends” qualifiers
around these numbers

In general: WAS traditional has
a greater degree of native code
(not eligible for zIIP offload)
supporting the Java runtime
than does Liberty

Best way to determine offload
difference is to benchmark
specific application

In additional to the greater zIIP offload potential, it is possible the same workload running in Liberty would
require fewer Value Unit Entitlements (VUEs) and thus imply a lower One Time Charge (OTC) cost.

Using Liberty z/OS with zCAP pricing could provide a very cost-effective solution for new Java workloads on
z/OS -- even when compared across all platforms.

Potential exists for very attractive cost model for Java on z/OS
Consult with your IBM sales representative for specific details about pricing

© 2016, IBM Corporation

12

Differences in the Management Models
Fu

n
ct

io
n

al
 C

ap
ab

ili
ty

Time

8.5.0.0 8.5.5.9
WAS traditional

• WAS traditional management model is
mature and functionally stable

• Initial Liberty management model was
lacking in functional capabilities

• Investment focus has shifted to Liberty
and its management model

• Investment also being made in
dev/ops flows for Liberty

The models are different, so a direct comparison
is difficult. Key point: Liberty has advanced
considerably since 8.5.0.0 and management

model is far more feature-rich than it was at first.

© 2016, IBM Corporation

13

When we Speak of “Operational Considerations,” we Refer to the Following ...

• Product installation

• Product maintenance updates

• Runtime creation

• Runtime provisioning (dev/ops, cloud, containers)

• Runtime configuration changes

• Runtime updates to new versions

• Application deployments / updates

• Backup and restore

• Capacity and performance monitoring

• Troubleshooting and problem tracking

• Usage monitoring and chargeback

• System automation routines

... and other activities

These activities are, to varying
degrees, important to the business

The discussion here is how deeply
invested you are in tools and

processes for these activities today,
and how easily can you move to a

Liberty runtime platform tomorrow

© 2016, IBM Corporation

14

A High-Level Framework for Evaluating Existing Workload for Move to Liberty

Operational Dependency
to WAS traditional

A
p

p
lic

a
ti

o
n

 D
ep

en
d

en
cy

to
 W

A
S

tr
ad

it
io

n
al

More

More

High Application / High Operational
• Applications not easily moved

• Vendor application dependencies

• Investment in WADMIN scripts

• Deep skills in WAS traditional Admin

• Maintain WAS traditional

• Consider Liberty for new workloads

Low Application / Low Operational
• Little or no application dependencies

• Little or no script or skill investment

• Consider Liberty for existing and new
workloads

High Application / Low Operational
• Applications have dependencies

• Little or no script investment

• Investment in Liberty skills in plan

• Consider Liberty for new workloads

• Investigate application re-engineering for
cases where move to Liberty is justified

Low Application / High Operational
• Little or no application dependencies

• Investment in WSADMIN scripts

• Deep skills in WAS traditional Admin

• Maintain WAS traditional for existing

• Consider Liberty for new workloads

© 2016, IBM Corporation

15

Application Considerations

© 2016, IBM Corporation

16

Web Application

Java EE

Full Java EE*

Common WAS

Full WAS APIs

Deprecated J2EE

Web Application

Java EE

Full Java EE*

Common WAS

API Gap

WAS Liberty WAS traditional

8.5.5.9

More on the API Gap between Liberty and WAS traditional

JAX-RPC
EJB Entity Beans
JAXR/UDDI

WAS Batch(“Compute Grid”)
WS-BA, WS-RM
JAXM 1.3
ApplicationProfile
AsyncBeans,
I18N
Startup Beans
WorkArea
SCA, SDO, XML
J2EE Extensions

Plus….
JAX-WS stacks are different
Runtime class visibility is different
Less EJB/IIOP QOS in Liberty
Client code may be different

An application that makes use of the APIs in the “API Gap” list may need re-
engineering to move to Liberty. If the application uses APIs that are common

across WAS traditional and Liberty, then it may move easily.
* For Liberty: partial Java EE 6, full Java EE 7. For WAS traditional: Full Java EE 6, Full Java EE 7 in beta

© 2016, IBM Corporation

17

Considerations Beyond the APIs

Time horizon for application

Value of application investment

Potential deployment environments

An application with a relatively short life horizon
may not be worth moving. Better to leave it where
it is and focus energy on higher-value applications

An application with a longer expected life span may
require re-engineering investment to run properly
on Liberty. Does the proposed investment yield

positive return for the business?

For new applications, do you expect to deploy the
application into environments such as IaaS cloud, or

Bluemix, or container environments such as
Docker? That may imply targeting Liberty as that
runtime is better prepared for operations in those

environments.

© 2016, IBM Corporation

18

Migration Toolkit for Application Binaries

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries

https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/

https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

Main wasDev page:

Technical Overview:

Updates page:

Your application
binaries

Migration
Toolkit

Detailed report by file
name, method name

and line number

Summary report of technology
used in application and target

environments where application
can be deployed

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries
https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/
https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

© 2016, IBM Corporation

19

Final Points on Application Considerations

CR SR

AppServerLiberty

WAS traditional z/OSLiberty

Application

CR SR

AppServer

WAS traditional z/OS

Liberty

Liberty

Application

This application path is relatively seamless

Notes:

• Liberty has Java EE 7, WAS traditional is in beta with that
technology. An application that makes specific use of
Java EE 7 (ex: JSR 352 Java Batch) would not work on
WAS traditional if Java EE 7 not present.

• Liberty is a single JVM environment, where WAS
traditional on z/OS has the potential for multiple
application JVMs (SRs). Applications that create
singletons may experience issues.

This path can work, but a bit more care needed

Notes:

• If application uses APIs in the “API Gap” illustrated
earlier, the application would require updating.

• If the application is relying on session replication
between SRs, that aspect of the application would need
inspection and persistence (if needed) configured in
Liberty using a database or caching layer.

© 2016, IBM Corporation

20

Operational Considerations

© 2016, IBM Corporation

21

Install and Maintain
• Product installations
• Maintenance updates
• Create runtimes
• Migrate to new versions
• Backup and restore

Plan, Monitor, Troubleshoot
• Capacity planning
• Performance planning
• Monitoring usage, resources, performance
• Analyze problems, track resolution

Change Management
• Identify change requirements
• Implement and test
• Promote up to production
• Track progress, effect back-outs

Develop, Deploy, and Test
• Application design and develop
• Deployment automation
• Deployment target provisioning
• Test planning and automation
• Other Dev/Ops activities

Broad Topic with Many Disciplines

Other?
• Any other operational activities

not on the lists above

© 2016, IBM Corporation

22

Comparison Grids to Follow

Operational
attribute or task

Runtime, Liberty or
WAS traditional

Green = same
Yellow = delta

By walking through the operational attributes it has the potential to stimulate thinking
and discussion about your current environment compared to Liberty. We encourage the

discussion. The objective is a clear understanding of the similarities and differences.

© 2016, IBM Corporation

23

Liberty WAS traditional

Installation mechanism Installation Manager Installation Manager

Install size 200MB, granular control 2GB

Memory size Lower (~50MB min/server) Higher (~1GB/server)

Operating systems Windows, Linux, AIX, HP, Solaris,
IBMi and z/OS

Windows, Linux, AIX, HP, Solaris,
IBMi and z/OS

z/OS operational mode UNIX process or STC STC

Virtual, cloud, containers VMs, IaaS, PaaS, Docker VMs, IaaS, Docker

Java SE support Any 1.6, 7.x or 8.x IBM only 1.6, 7.x, 8.x coming

Java EE support Partial 6.0, full 7.0 Full 6.0, full 7.0 in beta

Fix Packs and iFixes Yes Yes

New features and functions Frequent with continuous delivery Major version updates only

General Product Considerations

© 2016, IBM Corporation

24

Liberty WAS traditional

Composable runtime Yes (via Features) No

Dynamic configuration Yes Partial

Configuration structure Relatively simple, flexible location More complex, defined location

Configuration editing Simple XML updates; admin tools Admin console; WSADMIN scripting

Configuration updates Simple file-based XML file deltas via tools

Central management Collectives (no agents) Cell (with node agents)

Central management scale Very small to 10,000+ Very small to ~700 maximum

Central management failover Yes (controller replica) No (restart DMGR on other LPAR)

Configuration ownership Each server (no synchronization) DMGR (central with synchronization)

Application deployment Manual, script, with server package Admin Console, WSADMIN script

Application update Replace application file Redeploy through Admin

Product update No migration Migration tools

Configuration and Deployment

© 2016, IBM Corporation

25

Liberty WAS traditional

HTTP load balancing Plugin, ODRLIB, any HTTP proxy Same as Liberty, plus Java ODR

HTTP session replication DB persistence or WXS caching Same as Liberty, plus DRS

Scripting support Any WSADMIN (JACL or Jython)

Dynamic clusters / auto-scale Yes Yes

JMX client Java, REST WAS Admin Client

Monitoring mBeans, PMI PMI

Fine-grained admin authority No (single admin role) Yes

JMS providers Internal, WMQ, 3rd Party Internal, WMQ, 3rd Party

Clustered JMS provider No (use WMQ) Yes

2PC transaction recovery Yes Yes

Remote EJB calls Yes Yes

Runtime class visibility Defined API Internals are accessible

Docker support Yes (collective support in beta) Yes

Operational Capabilities

© 2016, IBM Corporation

26

Liberty WAS traditional

Default passwords No No

Minimal ports opened Yes No

Secured remote admin Yes (mandatory) Yes (but can be turned off)

File user registry Yes (server.xml) Yes (file based)

Federated LDAP or SAF Yes Yes

OAuth, OpenID, OIDC client Yes Yes

OIDC server/provider Yes No

LTPA, SPNEGO tokens Yes Yes

SAML Web SSO Yes Yes

SAML Web Services Yes Yes

User and Group API Yes Yes

Federated File registry w/ LDAP Yes Yes

Security Options (1 of 2)

© 2016, IBM Corporation

27

Liberty WAS traditional

Auditing No Yes

Advanced key/cert management Yes Yes

Local OS registry No (yes if z/OS = SAF) Yes

JAX-WS support for LTPA No Yes

JSEEHelper API No Yes

Security Options (2 of 2)

© 2016, IBM Corporation

28

Liberty WAS traditional

Multi-JVM (CR/SR) No Yes

z/OS Connect Yes No

zWLM Yes (Service and Report classification) Same, and work placement by SC

WOLA local adapters Yes (no 2PC yet) Yes

RRS TX coordination Yes (JDBC only) Yes

SMF request tracking Yes (HTTP only) Yes

Messages to server job log Yes Yes

Messages redirect to console Yes Yes

Hung thread stop and recover No Yes

Pause/Resume Listeners No Yes

Dispatch Progress Monitor Yes (with Health Manager feature) Yes

MODIFY interface Yes, but limited Yes

z/OS Integration and Platform Exploitation

© 2016, IBM Corporation

29

Summary of z/OS Operational Considerations

Install and backup/restore are somewhat similar for both

Both are operated as started tasks, so:
• Can use system automation routines
• Can monitor with SMF Type 30

Administrative interfaces are different; scripting interfaces are different

Both are capable of WLM service class and report classification based on
matching request URI patterns

WAS traditional has deeper z/OS integration functions, but if that’s not
something you’re making use of, then it’s less a factor

Liberty requires no migration tools to move to new version, WAS
traditional does, and the effort to migrate is not trivial

© 2016, IBM Corporation

30

Performance Considerations

© 2016, IBM Corporation

31

Startup Time, App Deploy Time, and Memory/Disk Footprint
Ti

m
e

 in
 S

e
co

n
d

(l
o

w
er

 is
 b

et
te

r)

WAS traditional Liberty

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

Startup time for
Liberty 32% the time

of WAS traditional

Application deployment
time 36% the time of

WAS traditional

Fo
o

tp
ri

n
t

in
 M

B
(l

o
w

er
 is

 b
et

te
r)

Memory footprint for
Liberty 47% that of

WAS traditional

Disk size for Liberty 10%
that of WAS traditional

Startup Time, App Deploy Time Memory Footprint, Disk Size

© 2016, IBM Corporation

32

Throughput on Distributed Platforms ... z/OS on Next Chart

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

Th
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

DayTrader 3 EJB, Hotspot JDK 8_31

Th
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

Web Services SOABench

Th
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

Messaging, JMS Prims 10k/10k

Liberty 99% of WAS traditional Liberty 100% of WAS traditional Liberty 108% of
WAS traditional

Liberty 97% of
WAS traditional

Effectively the same throughput for WAS traditional and Liberty on the distributed
platforms for DayTrader (EJB), SOABench (SOAP/WSDL), and Messaging (JMS)

No loss of throughput moving from WAS traditional to Liberty on distributed

© 2016, IBM Corporation

33

DayTrader 3 on z/OS Shows Liberty Outperforming WAS traditional

This is because Liberty’s single-JVM model is more efficient than WAS traditional’s
multi-JVM model with controller and servant regions

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

Th
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

DayTrader 3 EJB

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

WAS traditional z/OS

Liberty z/OS

DayTrader 3 EJB

Distributed
(from previous chart)

Note: the throughput axis for z/OS
shows results normalized ... that is, the
WAS traditional throughput achieved
was set to “100” and the Liberty
throughput achieved was proportional
to the baseline 100 value.

Actual throughput is a function of
many factors, including processor
speed, memory, cache size, and I/O.

The tests performed here were not
meant to compare distributed directly
with z/OS. Rather, the point here is
that on z/OS, Liberty outperformed
WAS traditional. On distributed, the
two were roughly equivalent.

© 2016, IBM Corporation

34

The Value of z13 Hardware, Java 8 and SMT Exploitation
SSL-Enabled DayTrader 3.0 with Liberty z/OS measured

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

zEC12 Hardware z13 Hardware

1

2

3

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
(H

ig
h

er
 is

 b
et

te
r)

1. Java 8 on zEC12
36% improvement -- improved JVM/JIT
(1.5/1.1 = 1.36)

2. Value of z13
33% improvement -- faster HW, greater
instruction exploitation by SDK
(2.0/1.5 = 1.33)

3. Java 8 on z13
43% improvement -- improved JVM/JIT,
greater instruction exploitation by SDK
(2.0/1.4 = 1.43)

4. Value of SMT
30% improvement -- exploitation of
SMT by Java 8 SDK
(2.6/2.0 = 1.30)

5. Overall
Java level, HW level, and SMT. We see
a 136% improvement
(2.6/1.1 = 2.36)

4

5

© 2016, IBM Corporation

Asynchronous v. Network I/O in Liberty z/OS

35 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

16.0.0.3
R

eq
u

es
ts

 p
er

 S
ec

o
n

d

Number of concurrent clients
2000 4000 8000

Network
I/O

Asynch
I/O

Asynchronous I/O performance benefits are most significant with larger numbers of concurrent clients:

1

2

3 Three key points:
1. Asynch I/O > Network I/O

In all three concurrent user scenarios,
Asynch I/O was 30% or more greater
throughput
2000 concurrent = +30%
4000 concurrent = +31%
8000 concurrent = +35%

2. Network I/O mostly flat
As concurrent users scale up, we see a
relatively flat line for Network I/O
(~1.9% improvement 2K to 8K)

3. Asynch I/O trends up
As concurrent users scale up, we see a
trend upwards with Asynch I/O
(~6.5 improvement 2K to 8K)

© 2016, IBM Corporation

Idle CPU time in Liberty on z/OS

36 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

Ti
m

e
in

 S
ec

o
n

d
s

/
H

o
u

r

Default

File Monitoring Off

Ten (10) Liberty Servers in a Collective on z/OS This chart is showing the CPU time
for 10 Liberty z/OS servers in a
Collective as they idle

The Y Axis shows the CPU time in
seconds for all 10 servers at each
hour mark (the X Axis).

When configured with the default
file monitoring setting, the
environment averaged about 11
CPU seconds per hour for the 10
servers.

When file monitoring is turned off,
the CPU time dropped to about 3
seconds total per hour for the 10
servers.

© 2016, IBM Corporation

37

z/OS Liberty Ramp-up with IBM Java 8

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

3

1
2

1

Ramp-up improvement
due to -Xtune:virt

Less elapsed time to
steady state when -
Xtune:virt used

2

Ramp-up improvement
Java 8 vs. Java 7

Java 8 achieved
steady state in less
elapsed time than
Java 7

3 Steady-state throughput improvement Java 8 over Java 7 with -Xtune:virt

Once steady state is achieved, Java 8 results in better throughput

© 2016, IBM Corporation

38

WAS traditional Network Deployment on zEC12 Liberty Collectives on zEC12

Process Name
CPU Time
(seconds)

Elapsed Time
(seconds)

Memory
(MB) Process Name

CPU Time
(seconds)

Elapsed Time
(seconds)

Memory
(MB)

DMGR CR 15.96 32 306.4 Controller 9.62 2.3 153

DMGR SR 20.01 13 398.0 Member1 5.96 1.7 138

Node Agent 11.39 72 224.0 Member2 5.14 1.9 141

Member1 CR 10.30 19 239.2

Member1 SR 7.58 7 256.4

Member2 CR 10.20 19 241.6

Member2 SR 7.56 7 259.6

Total 83 169 1925.2 Total 20.72 5.9 432

Startup footprint : WAS traditional ND on z/OS vs. Liberty z/OS

Liberty involves fewer processes to create a two-member cluster, and the design of
Liberty provides a smaller footprint and faster startup. The results bear this out.

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

© 2016, IBM Corporation

Startup and Shutdown Times: WAS traditional vs. Liberty

39 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

Ti
m

e
in

 S
ec

o
n

d
s

WAS traditional z/OS
Version 9

Liberty z/OS
16.0.0.2

Deployment
Manager

Node Agent 10 Application
Servers

Collective
Controller

10 Liberty
Servers

CPU Time

Elapsed Time

Shutdown Time

Start-up and shutdown of
10 servers in a Liberty
Collective is significantly
faster and more efficient.

© 2016, IBM Corporation

40

Memory Footprint: WAS traditional vs. Liberty

Memory footprint for 10
Liberty servers is almost 5
times less compare to 10
WAS traditional servers.

WAS traditional z/OS
Version 9

Liberty z/OS
16.0.0.2

Si
ze

 in
 M

eg
a

b
yt

es

Deployment
Manager

Node
Agent

10
Application

Servers

Collective
Controller

10 Liberty
Servers

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

© 2016, IBM Corporation

41

Idle CPU Time: WAS traditional vs. Liberty

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

WAS traditional z/OS
Version 9

Liberty z/OS
16.0.0.2

Deployment
Manager

Node
Agent

10
Application

Servers

Collective
Controller

10 Liberty
Servers

Ti
m

e
in

 S
ec

o
n

d
s

Idle CPU time with 10 Liberty
servers is approximately 3 times less
than WAS traditional servers. The
time shown is average per hour.

© 2016, IBM Corporation

42

WOLA - WAS traditional v. Liberty on z/OS

Scenario is COBOL batch
calling in to Java in WAS
traditional and Liberty

Liberty's WOLA support is in
general more efficient than
WAS . We see greater
throughput comparing WAS
traditional V9 vs. Liberty
8.5.5.7 (highlight )

In 16.0.0.2 further
enhancements were made
the Liberty WOLA support
providing even greater
throughput (highlight )

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

R
eq

u
es

ts
 p

er
 S

ec
o

n
d

Payload Size in Bytes

WAS traditional V9 Liberty 8.5.5.7 Liberty 16.0.0.2

1

2

© 2016, IBM Corporation

43

WOLA and IMS Inbound - WAS traditional v. Liberty on z/OS

Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

The Liberty z/OS support for WOLA and IMS came available in the 16.0.0.3 release

Liberty outperforms
traditional WAS in
all the payload sizes

R
eq

u
es

ts
 p

er
 S

ec
o

n
d

100
Bytes

1K
Bytes

4K
Bytes

8K
Bytes

32K
Bytes

64K
Bytes

128K
Bytes

Payload Size

147%

94%
61%

40%
50% 45% 40%

WAS traditional results
normalized to baseline 100

WAS traditional V9 Liberty 16.0.0.3

© 2016, IBM Corporation

44 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

WOLA and IMS Outbound - WAS traditional v. Liberty on z/OS
The Liberty z/OS support for WOLA and IMS came available in the 16.0.0.3 release

100
Bytes

1K
Bytes

4K
Bytes

8K
Bytes

16K
Bytes

64K
Bytes

128K
Bytes

Payload Size

Tr
a

n
sa

ct
io

n
s

p
er

 S
ec

o
n

d

WAS traditional V9 Liberty 16.0.0.3

32K
Bytes

9.89% 10.36%

10.10%

10.12%

12.92%

11.00%

4.19%

4.30%

Liberty outperforms
traditional WAS in all the
payload sizes ranging from
~10% up to 32K payloads
and ~4% in 64k and 128k
payloads size.

© 2016, IBM Corporation

45 Performance results derived in a controlled environment under specific conditions. Your results may vary depending on a number of factors.

WOLA and CICS Outbound - WAS traditional v. Liberty on z/OS

100
Bytes

1K
Bytes

4K
Bytes

8K
Bytes

16K
Bytes

64K
Bytes

128K
Bytes

Payload Size

32K
Bytes

Tr
a

n
sa

ct
io

n
s

p
er

 S
ec

o
n

d

WAS traditional V9 Liberty 16.0.0.30.49%
2.97%

2.14%

16.83%

13.30%

11.02%

11.67%

11.73%

Liberty outperforms
traditional WAS in all
payload sizes.

The difference is less in
smaller payload size
and is more in larger
payload size.

© 2016, IBM Corporation

46

Other Information for Consideration

© 2016, IBM Corporation

47

Installation Overview

IBM hosted
repository

Downloaded
local repository

IBM Installation
Manager z/OS

Command line tool for
managing installations to
USS file system locations

/usr/lpp/zWebSphere/V8R55FP09

/usr/lpp/zWebSphere/Liberty/V8R55FP09

WAS traditional installation mount point

Liberty installation mount point

For z/OS, “WAS ND” includes both WAS traditional and Liberty

They are installed separately, and may be installed in different locations

Maintenance is applied separately, so you may control when updates occur

You may maintain multiple levels of each in separate file systems
• WAS traditional is less flexible when it comes to moving up and down levels
• Liberty is by design flexible so you can easily change level of code used by servers

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102554
Installation Manager z/OS Techdoc

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102554

© 2016, IBM Corporation

48

Concurrent WAS traditional and Liberty

CR SR

AppServer

Liberty

CR SR

Deploy Mgr

CR SR

AppServer

Liberty

Liberty

Cell Collective This is possible and can be accomplished
Same LPAR or same Sysplex.

They are separate installations, separate configurations, and separate
started tasks. Normal z/OS considerations apply: avoid port conflicts, avoid
naming conflicts, etc.

Purpose: dual environments during runtime cutover
Avoids “big bang” cutover; allows applications to be moved one at a time.

They would be managed separately
WAS traditional management model would be unaware of Liberty
collective, and Liberty collective controller would be unaware of WAS
traditional cell.

Application integration between environments is
possible; complexity a function of pattern:

MQ (or JMS messaging) = relatively easy
REST = relatively easy
IIOP = more complex

© 2016, IBM Corporation

49

Liberty Collectives Overview

Controller

Liberty
Server

Instance

Member

Liberty
Server

Instance

Controller

Liberty
Server

Instance

Controller

Liberty
Server

Instance

Member

Liberty
Server

Instance

Member

Liberty
Server

Instance

Web UI

Scripting

“Replica Set” (for availability of Controller)

“Member cluster”

HTTPS
SSH
Secure Copy
JMX

“Collective”
A collection of Liberty servers with some servers
designated as “controllers” and others as
“members” of the collective.

Flexible: Join, Leave
Simple XML definitions specify the collective to
which a server will be a member. Relatively easy to
join a collective; easy to leave and join another.

Server clustering
Members can arrange into a cluster for purposes of
application availability and intelligent workload
placement.

Rich set of management beans
For monitoring and managing the environment

AdminCenter interface
For web interface to collective

Available, scalable
Controllers can be arranged into a highly available
“replica set”. Designed to scale to large topology.

© 2016, IBM Corporation

50

Document Change History

Date Description

May 17, 2016 Original document

Feb 8, 2017 Updated to reflect new function in Liberty z/OS (SMF, WOLA and IMS, SAF keyring for collectives), as well as the
additional of a number of new performance charts.

