
WebSphere Application Server for z/OS Version 7

The WOLA Native APIsThe WOLA Native APIs
... a COBOL Primer... a COBOL Primer

A series of structured exercises, from simple to increasingly advanced,
illustrating the WOLA native APIs ... both inbound and outbound.

Version Date: August 13, 2013
See "Document Change History" on page 57 for a description of the changes in this version of the document

IBM Advanced Technical Skills
Gaithersburg, MD

WP101490 at
ibm.com/support/techdocs
© IBM Corporation 2010

WP101490 – The WOLA Native APIs ... a COBOL Primer

Many, many thanks to Jim Mulvey, Tim Kaczynski and Dave
Follis of the WAS z/OS development team. And a special

thanks to Leigh Compton and Dennis Weiand of ATS for
their help with the more complex COBOL coding issues.

And of course the IBM customers who are using WOLA!

The WAS z/OS support team in IBM Advanced Technical Skills
consists of John Hutchinson, Mike Kearney, Louis Wilen,
Lee-Win Tai1, Mike Loos, Paul Houde and Don Bagwell.

We also receive wonderful support from Dennis McDonald
and Brian Pierce.

Mike Cox, Distinguished Engineer, serves as technical advisor
to all our activities.

1 This paper owes much to Lee-Win's Java skills, particularly as it relates to WOLA.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 2 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Table of Contents

Introduction and Overview..5
Why COBOL?.. 5
Java skills needed?... 5
What about CICS and IMS?.. 5

Important Sources of Information...6
Some Essential WOLA Level-Setting...7

Inbound vs. Outbound... 7
Native APIs vs. Java APIs... 7
The Native APIs... 7
Some essential concepts... 8
Categorizing the APIs according to their usage...9
What those APIs do ... in simple terms..9

An Picture Overview Map of the Exercises in this Document...10
Exercise 1a -- page 18 ... 10
Inbound Exercise 2a -- page 23... 10
Inbound Exercise 2b -- page 26... 10
Inbound Exercise 2c -- page 29... 11
Inbound Exercise 2d -- page 32... 11
Inbound Exercise 2e and 2f -- page 34..12
Inbound Exercise 2g and 2h -- pages 36 and 40 respectively...12
Outbound Exercise 3a -- page 44..13
Outbound Exercise 3b -- page 50..13
Outbound Exercise 3c -- page 52.. 13
Outbound Exercise 3d -- page 53..14
Outbound Exercise 3e and 3f -- page 53...15

Unit 1: Exploring the BBOA1REG and BBOA1URG APIs...16
A quick review of the BBOA1REG API..16
Exercise Preparation... 18
Overview of Exercise 1a - Simple BBOA1REG and BBOA1URG...18
Perform Exercise 1a.. 19
Variations on Exercise 1a - forced error conditions...20
Summary of Unit 1 - BBOA1REG and BBOA1URG APIs..21

Unit 2: Exploring the inbound API model..22
Preparing the environment for exercises...22
Overview of Exercise 2a - Simple BBOA1REG, BBOA1INV, BBOA1URG..23
Perform Exercise 2a.. 25
The assumptions BBOA1INV makes...26
Wrap-up of Exercise 2a... 26
Overview of Exercise 2b - Looping BBOA1INV...26
Perform Exercise 2b.. 28
Wrap-up of Exercise 2b... 28
Moving on -- the "advanced" inbound APIs...28
Overview of Exercise 2c - single synchronous BBOA1SRQ and BBOA1GET...29
Perform Exercise 2c.. 31
Wrap-up of Exercise 2c... 32
Overview of Exercise 2d -- looping BBOA1SRQ and BBOA1GET..32
Perform Exercise 2d.. 32
Wrap-up of Exercise 2d... 33
Overview of "synchronous" and "asynchronous" with respect to BBOA1SRQ and BBOA1RCL.......................33
Overview of Exercises 2e and 2f - asynchronous BBOA1SRQ with synchronous BBOA1RCL.........................34
Perform Exercise 2e.. 36
Perform Exercise 2f... 36
Wrap-up of Exercises 2e and 2f.. 36
Overview of Exercise 2g - BBOA1SRQ and BBOA1RCL both set to async=1, no loop....................................36

© 2010, IBM Corporation
Americas Advanced Technical Skills - 3 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Overview of Exercise 2h - BBOA1SRQ and BBOA1RCL both set to async=1, with loop..................................40
Perform Exercises 2g and 2h.. 40
Wrap-up of Exercises 2g and 2h... 41
Wrap-up of the Unit 2 -- Inbound APIs...41

Unit 3: Exploring the outbound API model..42
The Java programming interfaces... 42
Important: When the external address space is CICS...42
Preparing the environment.. 42
The concept of "hosting a service".. 43
Registering and Unregistering with BBOA1REG and BBOA1URG...43
The "service name" role when going outbound...43
Overview of Exercise 3a - BBOA1SRV and BBOA1SRP..44
Perform Exercise 3a.. 49
Wrap-up of Exercise 3a... 50
Overview of Exercise 3b - BBOA1SRV, BBOA1SRP with loop...50
Perform Exercise 3b.. 51
Wrap-up of Exercise 3b... 51
Beyond BBOA1SRV -- the primitive BBOA1RCA..51
Beyond BBOA1RCA -- an even more "primitive" primative: BBOA1RCS..52
Overview of Exercise 3c - BBOA1RCA...52
Perform Exercise 3c.. 52
Overview of Exercise 3d - BBOA1RCA with a loop...53
Perform Exercise 3d.. 53
Overview of Exercise 3e and 3f - synchronous BBOA1RCS and with a loop..53
Perform Exercise 3e and 3f... 53
What about asynchronous BBOA1RCS?...53
Wrap-up of the outbound exercises... 53

Appendix - Miscellaneous Information...54
Quick checklist for enabling the WAS environment for these exercises..54
A picture representation of the relationships when using WOLA...55

Document Change History...57

© 2010, IBM Corporation
Americas Advanced Technical Skills - 4 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Introduction and Overview
This document is intended to assist you in becoming comfortable with coding to the WOLA native
APIs. The document is provided in a primer format -- "A book that covers the basic elements of a
subject." 2

We'll do this by providing structured lessons that start simple then layer up to more complex topics
and issues.

To get the most out of this document you'll need access to a z/OS system that has the following:

● WebSphere Application Server for z/OS V7.0.0.4 or higher

● A configured runtime environment, either Network Deployment or Standalone Server

● A node in that runtime environment enabled for WOLA support

Note: In the WAS z/OS InfoCenter3, search on tdat_enableconnector. That will take you to
the page that provides the step-by-step instructions to do this. We provide a quick checklist
of things under "Quick checklist for enabling the WAS environment for these exercises" on
page 54.

Why COBOL?

Because it's a very prevalent z/OS programming language, and it may be the most common
language used with CICS.

Truth is, the API usage is essentially the same between COBOL and C/C++ with the exception
of some syntax differences. Functionally it's the same, and the parameters are the same, but
there are differences in the way certain formatting and delimiting characters are coded.

Java skills needed?

Not for the exercises in this document. The Java sample program supplied with WOLA will be
used for all these exercises. That sample Java program makes use of the methods
implemented on the WOLA JCA resource adapter that's shipped with the function.

What about CICS and IMS?

Both CICS and IMS support use of WOLA to communicate with WAS. CICS support was part of
the original offering of 7.0.0.4; IMS support came into play with 7.0.0.12.

Both CICS and IMS provide a way to "shield" your external programs from having to use the
APIs. CICS provides a "Link Server Task" which invokes the target program using EXEC CICS
LINK. IMS provides a way to shield the program behind the OTMA interface.

Note: This document will not go into the specifics of enabling the CICS Link Server Task or the IMS
OTMA support. The InfoCenter has detailed instructions on that.

The message is this -- the exercises in this document do not require CICS or IMS. Batch
COBOL with a WOLA-enabled WAS z/OS server is all you need.

Ready? Let's begin ...

2 dictionary.com
3 http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

© 2010, IBM Corporation
Americas Advanced Technical Skills - 5 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Important Sources of Information

© 2010, IBM Corporation
Americas Advanced Technical Skills - 6 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Some Essential WOLA Level-Setting
First a little preliminary education to set the stage.

Inbound vs. Outbound

The key is who initiates the call, the Java program or the COBOL program? The following
picture illustrates this concept:

Some of the APIs relate to one, and some of the APIs relate to the other. That's why having this
distinction in mind is important.

Native APIs vs. Java APIs

The focus of this document is the native APIs. By that we mean the ones used by the non-Java
languages such as COBOL.

There are Java APIs associated with WOLA4. They are provided in the JCA resource adapter
mentioned earlier. That resource adapter, called ola.rar, implements the Common Client
Interface (CCI).

The Native APIs

There are 13 native APIs listed in the InfoCenter5:

The InfoCenter page offers a wonderful reference of each, including the parameter syntax,
parameter data typing, return codes and reason codes. For example, the BBOA1REG API's
parameter syntax looks like this:

But that begs the questions, "What does BBOA1REG do?" and "What are all those parameters?"
and what are all those other APIs?

And that's what we'll cover throughout this document.

4 See the "Design and Planning Guide" PDF associated with the WP101490 Techdoc.
5 Search on cdat_olaapis

© 2010, IBM Corporation
Americas Advanced Technical Skills - 7 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Some essential concepts

Terms or Phrases Explanation

Register
Registration
Registering

This is the first and most fundamental type of WOLA link between your external
program and an application server. Think of it as the basic "pipe" used between
WAS and the external address space. Multiple registrations is possible.

Registering establishes a pool of shared memory that is used for control
information and the exchange of messages6 over WOLA. It also establishes a
connection pool within the registration. More on that in a bit.

The external program always initiates the registration. WAS receives the request
and establishes the linkage.

Registrations carry a name and other settings. When you wish to send or receive
a message you have to indicate which register name to use.

Unregister
Unregistration
Unregistering

The opposite of registration. Unregistering tears down (removes) the connection
pool and the shared memory allocation. The registration name is removed from
the list maintained by the WAS cell.

The external program initiates unregistration. WAS receives the request and
processes the removal and cleanup of the registration.

Requests Requests are what goes from originator to the target.

Responses Responses are what comes back from the target.

Connections Within a particular registration there exists some number of connections, which
are maintained in a pool. The minimum and maximum number of connections is
specified at the time of registration.

Requests and responses flow over a connection. Multiple connections within a
registration allows multi-threading of requests and responses.

Invoke (or Send) Originators invoke (or send) a request.

Host (or Receive) As we mentioned, an originator invokes (or sends) a request. That means
something must be on the other side to receive and act on the request.

When going inbound to WAS from an external address space, that something is
the WOLA support code inside WebSphere Application Server. You don't really
see this activity; it's hidden under the covers.

When going outbound from WAS to an external address space, that something is
your program7. "Hosting" a service is the act of your program using one of the
WOLA APIs to put itself into a state of readiness in anticipation of a message.

The WP101490 "Design and Planning Guide" categorized this as "advanced." It's
not really that complicated, but it's more complicated than a simple invoke.

"Receive" is a more granular type of "hosting a service."

Service A request is sent over a connection, which is a subset of the registration pool. A
service is a name that represents the final target.

Originators need to know the name of the target so it can specify who to deliver
the request to.

In WAS the target is an EJB, and the service name is the JNDI name of the EJB.

In CICS the target is a program, and the service name is the name of the
program.

For batch it's the service name specified on the "host a service" API.

6 Actually only very large messages pass through this shared "above the bar" shared memory; smaller messages use
another cross-memory path. But that's a detail that simply doesn't matter in the context of this document.

7 The exception is when going from WAS to CICS and you use the WOLA BBO$ LINK server task. That hides the details as
well. The "Design and Planning Guide" PDF of WP101490 explains how this element of WOLA works. For the purposes
of this document focus on the description above.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 8 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Categorizing the APIs according to their usage

The 13 native APIs we mentioned earlier can be catgorized in this way:

What those APIs do ... in simple terms
BBOA1REG Registers into the Daemon Group shared memory

BBOA1INV Sends a request to WAS

BBO1ACNG Gets a connection from the connection pool

BBOA1SRQ Sends a request into WAS

BBOA1GET Gets a reponse off the message thread

BBOA1CNR Releases the connection and returns it to the pool

BBOA1RCL Gets the length of the response so it can be pulled in and worked on

BBOA1SRV Sets up a "host a service" function in your program

BBOA1SRP Sends a response back to whatever came to your program

BBOA1RCA A finer-grained version of BBOA1SRV -- "Receive Connection Any"

BBOA1RCS Receives message on a specific connection using a connection handle

BBOA1SRX Sends an exception response back if something goes wrong

BBOA1URG Opposite of REG ... tears down the registration

And with that we're ready to dig deeper into these APIs and their usage.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 9 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

An Picture Overview Map of the Exercises in this Document
This section provides a very high-level picture representation of each exercise with a page pointer
to where the specifics are covered in more detail.

Exercise 1a -- page 18

A simple "register / unregister" exercise:

Inbound Exercise 2a -- page 23

A single invocation of the Java program:

Inbound Exercise 2b -- page 26

Looping BBOA1INV:

© 2010, IBM Corporation
Americas Advanced Technical Skills - 10 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Inbound Exercise 2c -- page 29

Finer control: BBOA1CNG, BBOA1SRQ, BBOA1GET, BBOA1CNR

Inbound Exercise 2d -- page 32

Insert loop into Exercise 2c:

© 2010, IBM Corporation
Americas Advanced Technical Skills - 11 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Inbound Exercise 2e and 2f -- page 34

Asynchronous BBOA1SRQ, "other work" and then synchronous BBOA1RCL (2e is single pass)
and then a loop (2f is with a loop):

Inbound Exercise 2g and 2h -- pages 36 and 40 respectively

Asynchronous BBOA1SRQ, "other work" and then asynchronous BBOA1RCL (2g is single pass)
and then a loop (2h is with a loop):

© 2010, IBM Corporation
Americas Advanced Technical Skills - 12 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Outbound Exercise 3a -- page 44

Single pass design. Register, BBOA1SRV to host a service, send a response, release
connection and unregister.

Outbound Exercise 3b -- page 50

Exercise 3a with a loop.

Outbound Exercise 3c -- page 52

Single pass with BBOA1RCA and BBOA1GET:

© 2010, IBM Corporation
Americas Advanced Technical Skills - 13 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Outbound Exercise 3d -- page 53

Exercise 3c with a loop:

© 2010, IBM Corporation
Americas Advanced Technical Skills - 14 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Outbound Exercise 3e and 3f -- page 53

BBOA1RCS with async=08

Asynchronous RCS? See "What about asynchronous BBOA1RCS?" on page 53.

8 Note that the BBOA1CNG and BBOA1CNR are now outside the loop. We can do that because BBOA1RCS does not itself do a
CNG under the covers while BBOA1INV and BBOA1RCA does. Because they issue a BBOA1CNG each time, if we didn't
release the connection the program would simply get one more each loop until the maximum connections was exhausted.
The maximum connections is set on BBOA1REG.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 15 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Unit 1: Exploring the BBOA1REG and BBOA1URG APIs

Think of BBOA1REG and BBOA1URG as the start and stop of a broad WOLA "cycle." The BBOA1REG
API (simply REG for short), constructs the registration shared space, establishes the control blocks
and prepares the environment to pass traffic back and forth. BBOA1URG (URG for short) does the
reverse.

Before you can do anything with WOLA you have to process a REG.

Before you quit for the day you should process an URG9 to clean up your environment.

A quick review of the BBOA1REG API

The BBOA1REG API is what establishes the initial registration into the WAS z/OS environment.

The InfoCenter (search: cdat_olaapis) provides the following syntax guide. We've
highlighted the input parameters and output values:

The key input parameters are the cell, node and server short names where the target EJB
resides:

Notes:

1. daemongroupname -- this is the cell short name for the cell into which you wish to establish the
registration relationship.

2. nodename -- the node short name where the target server resides.

3. servername -- the server short name where the target server resides.

The other input parameters are:

Notes:

1. registername -- this is an arbitrary name to uniquely identify the registration. This is used in
other APIs to indicate which registration to use to send the traffic. It must be exactly 12
characters long. Blank padded works.

2. minconn -- the starting connections in the connection pool for this registration.. The default is 1.

9 Strictly speaking you could just close down your batch program or CICS region. But processing a BBOA1URG to unregister
is better practice.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 16 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

3. maxconn -- tthe maximum connections in the connection pool for this registration. The default is
1010.

4. registerflags -- this is a three-byte (32-bit) field used to pass in information about the
transaction and security attributes to apply to this registration:

• Bit 29 -- CICS to WAS identity propagation (CICS task identity)

• Bit 30 -- CICS to WAS transaction propagation

• Bit 31 -- WAS to CICS transaction propegation (at present fixed at 0)

Here's an example of a COBOL snippet that would perform the registration:

Notes:
1. The daemongroup name must be null-terminated. That's why "value low-values."

2. The values minconn and maxconn are set to default 1 and 10.

3. The regopts parameter is set to 32 bits of 0, which means no security propagation and no
transaction propagation. Good enough for simple validation.

4. String values are populated.

5. The daemongroup value (cell short name) must be null-terminated. This is simply insuring that
is the case.

6. The BBOA1REG API is called with the values input parameters populated based on earlier setting.

That's enough background information. Let's do some actual practice runs.

10 See "Design and Planning Guide" under the WP101490 Techdoc for a discussion of the performance considerations for
minconn and maxconn. When first starting out the defaults are fine.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 17 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Exercise Preparation

In prep for the upcoming exercises, make certain you have:

Access to a COBOL compiler and system link editor

The WOLA modules copied out11 to a load library you can reference from LKED SYSLIB

A WAS z/OS server environment created and operational and enabled for WOLA12.

Summary: • Cell-level environment variable WAS_DAEMON_ONLY_enable_adapter = true
• The ola.rar JCA adapter installed into the target node
• The OLASample1.ear sample application installed into the target server
• The CB.BIND.<prefix>.** profile updated to provide READ to the ID of the batch program

• The WAS cell (including daemon) stopped and restarted to pick up the changes made

Overview of Exercise 1a - Simple BBOA1REG and BBOA1URG

Note: The source for this exercise and all others can be found in the ZIP file that accompanies this
document under the WP101490 Techdoc at ibm.com/support/techdocs.

This exercise performs a very simple registration and unregistration from the specified WAS
z/OS "daemon group." It'll execute very quickly as it does no work beyond that.

The exercise code looks like this:

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER1A.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * API Parms
 01 daemongroup PIC X(8) VALUE LOW-VALUES.
 01 node-name PIC X(8).
 01 server-name PIC X(8).
 01 register-name PIC X(12) VALUE SPACES.
 01 minconn PIC 9(8) COMP VALUE 1.
 01 maxconn PIC 9(8) COMP VALUE 10.
 01 regopts PIC 9(8) COMP VALUE 0.
 01 urgopts PIC 9(8) COMP VALUE 0.
 01 rc PIC 9(8) COMP VALUE 0.
 01 rsn PIC 9(8) COMP VALUE 0.
 * Procedures Section
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 MOVE 'EXER1A' TO register-name.
 MOVE 'S1CELL' TO daemongroup.
 MOVE 'S1NODEC' TO node-name.
 MOVE 'S1SR01C' TO server-name.

 INSPECT daemongroup CONVERTING ' ' to LOW-VALUES.

 CALL 'BBOA1REG' USING
 daemongroup,
 node-name,
 server-name,
 register-name,
 minconn,
 maxconn,
 regopts,
 rc,

11 The olaInstall.sh does that for you. InfoCenter search: tdat_enableconnector for the syntax.
12 InfoCenter: tdat_enableconnector

© 2010, IBM Corporation
Americas Advanced Technical Skills - 18 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

4

WP101490 – The WOLA Native APIs ... a COBOL Primer

 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1REG problem -- rc/rsn : " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully registered into " daemongroup
 END-IF.

 CALL 'BBOA1URG' USING
 register-name,
 urgopts,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1URG problem -- rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully unregistered from " daemongroup
 END-IF.

 GOBACK.

 * Exit with bad-RC

 Bad-RC.
 DISPLAY "OLA - EXITING program due to non-RC=0."
 GOBACK.

/*

Notes:

1. Setting up the working storage definitions. The InfoCenter (search: cdat_olaapis) has information
on each of the API parameters. Notice how some have initial values supplied, such as minconn,
maxconn and the options fields.

2. The key information is supplied for the registration -- register name (must be exactly 12 characters13,
must be unique from any other registrations in place, but otherwise arbitrary), and the short names:
cell (called "daemongroup"), node and server.

3. The daemon group name must be null terminated, which is why this INSPECT is used.

4. The BBOA1REG API is called and the variables are passed in.

5. Simple IF structure to check for RC and report on what it sees.

6. The BBOA1URG API is called with its parameters passed in.

7. Another simple IF.

8. Where program goes if RC>0.

The output in SYSOUT should looks like this:

Successfully registered into S1CELL
Successfully unregistered from S1CELL

Perform Exercise 1a

Do the following:

Allocate a target module library where the compiled module will go.

13 Because the working storage definition was PIC X(12) VALUE SPACES is becomes blank padded, which is acceptable.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 19 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

5

6

7

8

WP101490 – The WOLA Native APIs ... a COBOL Primer

Copy the supplied sample exer1a.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

Check the SYSOUT ... what RC did you get from BBOA1REG?

● RC=0, RSN=0 Successful registration

● RC=12, RSN=10 Daemon group not found ... typo or WAS not started14

● RC=12, RSN=16 Node or server name not found ... typo, or the target
application server wasn't started

● RC=12, RSN=24 Daemon up, but server named is not.

● RC=12, RSN=30 "The daemon group is not running with
WAS_DAEMON_ONLY_enable_adapter
property set to 1." 15

Note: If you received any non-0 RC then go back and correct the problem, recompile and re-
run until you get a successful register/unregister.

Variations on Exercise 1a - forced error conditions

In this exercise you create some intentional error conditions to see the RC/RSN thrown and
match that against what's in the InfoCenter. Make the change indicated, recompile and re-run.

BBOA1REG errors:

Provide an incorrect daemongroup -- should get RC=12/RSN=10

Provide an incorrect node-name or server-name -- should get RC=12/RSN=16

Stop the application server but leave the Daemon up -- should get RC=12/RSN=24

Duplicate the block of BBOA1REG code, including the IF-THEN structure, so the program
will try to register twice with the same name. Should get RC=8/RSN=816

Restore the program back to its working RC=0/RC=0 state.

BBOA1URG errors:

Copy the line: MOVE 'EXER1A' TO register-name to just above the BBOA1URG call.

On the new copy of the line, change the registration name to something other than what
was used earlier to register. That creates a condition where you're trying to unregister
using a name that's not currently in the registration list.

You should see RC=8/RSN=8, which the InfoCenter indicates means "Registration token
name does not exist."

14 InfoCenter: cdat_olaapis. Each API has a table with RC and RSN. Very good explanations.
15 InfoCenter: tdat_enableconnector. The environment variable is needed to tell the Daemon to allow the use of WOLA.

Daemon restart needed after setting this variable.
16 It is possible to have multiple registrations into the same daemon group. You just can't have two with the same name in

the same daemon group.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 20 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Summary of Unit 1 - BBOA1REG and BBOA1URG APIs

In this unit we explored two of the 13 APIs:

We didn't have you do any "real work" with the other APIs between the REG and URG calls.

Key points we were trying to reinforce:

● Registration and unregistration mark the beginning and end of WOLA "session" with the
WAS server environment.

● Registration is very specific to the cell, node and server. Your external program may
only interact with a Java program in the server named on registration17.

● The APIs have input and output parameters, and the InfoCenter spells out the data
requirements and usage for each.

● BBOA1REG and BBOA1URG throw RC/RSN values. The InfoCenter has an excellent
description of what each means.

● And (we hope) you saw that using these two APIs wasn't difficult at all.

17 You may have that Java program interact with other Java programs elsewhere in the WAS environment. That's WAS
business as usual. The point here is that WOLA is very specific -- external address space to application server.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 21 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Unit 2: Exploring the inbound API model
As a refresher, the inbound model is this:

In practical terms that means:

● The external program needs to register into the WAS cell, naming the cell short, node short
and server short names. We saw how to do that in Unit 1 of this document.

● The external program needs to use that registration to send a request to the WAS side.

● The external program needs to process the returned response

● When all the work is done, the external program needs to unregister

The APIs we'll explore will be these:

We'll start with BBOA1INV because that's the easiest to understand and use.

Preparing the environment for exercises

To call from COBOL into WAS we need an application in the target server that's capable of
dealing with the inbound WOLA call, and will do something we expect in return.

WOLA ships with a sample application called OLASample1.ear18. It's a handy tool that interacts
with the supplied samples for both inbound and outbound work. That will be the Java program
we'll work with throughout this document.

18 Found in the /<was_smpe_root>/mso/OLA/samples/ directory

© 2010, IBM Corporation
Americas Advanced Technical Skills - 22 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Do the following:

Locate the OLASample1.ear file in the directory we indicated on the previous page.

Install it into the application server you intend to use as the target for your WOLA calls.
Take all the application defaults.

Insure the application is started.

Overview of Exercise 2a - Simple BBOA1REG, BBOA1INV, BBOA1URG

The use of BBOA1REG and BBOA1URG is the same as in Exercise 1a. Now we'll place a
BBOA1INV between the two that will send a message to the OLASample1 program in Java and
receive the message back.

The InfoCenter indicates this API has a few parameters different from what we saw on REG and
URG:

We'll explain what those parameters do in a moment. But first we have to do some additional
things to the COBOL program to recognize and use those parameters and that API.

Note: The source for this exercise and all others can be found in the ZIP file that accompanies this
document under the WP101490 Techdoc at ibm.com/support/techdocs.

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER2A.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * REG and URG parms
 01 daemongroup PIC X(8) VALUE LOW-VALUES.
 01 node-name PIC X(8).
 01 server-name PIC X(8).
 01 register-name PIC X(12) VALUE SPACES.
 01 minconn PIC 9(8) COMP VALUE 1.
 01 maxconn PIC 9(8) COMP VALUE 10.
 01 regopts PIC 9(8) COMP VALUE 0.
 01 urgopts PIC 9(8) COMP VALUE 0.
 01 rc PIC 9(8) COMP VALUE 0.
 01 rsn PIC 9(8) COMP VALUE 0.
 01 rv PIC 9(8) COMP VALUE 0.
 * INV parms
 01 service-name PIC X(255).
 01 service-name-length PIC 9(8) COMP.
 01 rqst-area PIC X(100) VALUE SPACES.
 01 rqst-area-addr USAGE POINTER.
 01 rqst-area-length PIC 9(8) COMP VALUE 100.
 01 resp-area PIC X(100) VALUE SPACES.
 01 resp-area-addr USAGE POINTER.
 01 resp-area-length PIC 9(8) COMP VALUE 100.
 01 wait-time PIC 9(8) USAGE BINARY.
 01 rqst-type PIC 9(8) COMP VALUE 1.
 * Working Variables
 01 text-msg PIC X(40) VALUE SPACES.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 23 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

WP101490 – The WOLA Native APIs ... a COBOL Primer

 * Procedures Section
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 MOVE 'EXER2A' TO register-name.
 MOVE 'S1CELL' TO daemongroup.
 MOVE 'S1NODEC' TO node-name.
 MOVE 'S1SR01C' TO server-name.
 MOVE 'This is a test message' TO text-msg.
 MOVE 'ejb/com/ibm/ola/olasample1_echoHome'
 TO service-name.

 (BBOA1REG code same as before ... clipped to save space in document)

 MOVE text-msg TO rqst-area.
 MOVE LENGTH OF rqst-area TO rqst-area-length.
 MOVE rqst-area-length TO resp-area-length.
 SET rqst-area-addr TO ADDRESS OF rqst-area.
 SET resp-area-addr TO ADDRESS OF resp-area.
 INSPECT service-name CONVERTING ' ' to LOW-VALUES.

 CALL 'BBOA1INV' USING
 register-name,
 rqst-type,
 service-name,
 service-name-length,
 rqst-area-addr,
 rqst-area-length,
 resp-area-addr,
 resp-area-length,
 wait-time,
 rc,
 rsn,
 rv.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1INV problem, rc/rsn/rv: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Message sent: " rqst-area
 DISPLAY "Message back: " resp-area
 END-IF.

 (BBOA1URG code same as before ... clipped to save space in document)

Notes:

1. The working storage definitions for REG and URG are the same as before.

2. These are now required because of the parameters used on the BBOA1INV API. They are:

register-name This must be equal to what was used on BBOA1REG
rqst-type At present always "1" for EJB
service-name The JNDI name of the deployed target EJB (case matters)
service-name-length The length of the EJB's JNDI name
rqst-area-addr Pointer to where the inbound message is held in memory
rqst-area-length Length of the inbound message
resp-area-addr Pointer to where the response message will go
resp-area-length Length of response message expected
wait-time The number of seconds to wait before timing out
rc, rsn, rv Return code, reason code, and length of response

Note: BBOA1INV makes a few assumptions, which is why the API is easy to use. In a moment
we'll explain what those assumptions are. That will lead into a discussion of the more
"advanced" inbound APIs.

3. Here we're simply setting up an area where a string literal will go.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 24 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

4

5

6

7

WP101490 – The WOLA Native APIs ... a COBOL Primer

4. The BBOA1REG variable values are as before. Here we're populating two more: text-msg is just
that, a message we'll send over to WAS; service-name is the JNDI name of the EJB deployed in
the target server. That's how WAS knows which EJB to invoke when the request comes in.

5. We're doing some housekeeping here, which takes a bit of explaining:

MOVE text-msg TO rqst-area.
Just a way to keep the message text separate from the parameter variable until the moment we're about to
invoke. Strictly speaking not necessary ... we could have passed text-msg as parameter variable.

MOVE LENGTH OF rqst-area TO rqst-area-length.
This is how the length of the message is computed. The value is placed in the parameter variable.

MOVE rqst-area-length TO resp-area-length.
We know the OLASample1 application is a simple echo, so it was safe for us to assume input=output
length. If you know a maximum length you set response length to that. If you're just not sure you'll have to
use the "advanced" APIs, which return the length of the response.

SET rqst-area-addr TO ADDRESS OF rqst-area.
Computing the pointer to the input text area.

SET resp-area-addr TO ADDRESS OF resp-area.
Computing the pointer to the output text area.

INSPECT service-name CONVERTING ' ' to LOW-VALUES.
Just a bit of trickery ... if the service name is null-terminated then it's not necessary to compute and pass
the length of the service name.

6. The BBOA1INV API is called with its parameters passed in.

7. Another simple IF, with the inbound text and outbound text displayed.

The output in the EXER2A batch program SYSOUT should looks like this:

Successfully registered into S1CELL
Message sent: This is a test message
Message back: This is a test message
Successfully unregistered from S1CELL

The output in the target WAS server's servant region will look like this:

Returning passed data: ¢@ ¢@ @ ¢ @ ¢ ¢ @@@@@@@@@
@@@...

That's because the batch program is working in EBCDIC and the WAS z/OS JVM is in ASCII.
The EBCDIC characters coming over are not translated to ASCII automatically19.

Perform Exercise 2a

Do the following:

Copy the supplied sample exer2a.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

If you received anything other than RC=0, then consult the InfoCenter's API page and
analyze the cause of the problem. Correct, recompile and re-run.

19 We could have illustrated codepage conversion before sending to WAS. But the objective of the inbound exercises is to
explore the API usage and syntax. So we chose not to worry about the funny characters in the servant output. In the
outbound exercises we'll see the COBOL doing code page conversions.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 25 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

The assumptions BBOA1INV makes

We mentioned that BBOA1INV makes some assumptions. That's what makes it a simple API to
use. Here are the assumptions:

● The response length is predictable; or at least the maximum response length is
predictable.

● You wish the invoke to work synchronously; that is, your program invokes BBOA1INV
and control does not come back until WOLA indicates the response is received.

If either of those doesn't hold true, then you must start considering the "advanced" APIs we'll
discuss in a bit. Those allow you to operate with uncertain response lengths, and operate
asynchronously ... meaning, you send the message and control is returned immediately to you.
That frees you to go do other things. But it means you must come back and check to see if a
response has been received. We'll illustrate all that later in the document.

Wrap-up of Exercise 2a

The BBOA1INV API does things for you under the covers. In fact, it uses the "advanced20" APIs
to achieve the simplified appearance that BBOA1INV provides.

Here's a high-level summary of the things that take place behind the scenes with BBOA1INV:

● At time of registration a pool of connections is established. BBOA1INV retrieves one of
those connections from the pool.

● The request is sent with the "asynch = no" flag set. That means your program does not
gain control until WOLA signals a response is ready to process.

● A "get" is issued to pull the response from WOLA and put it into your working storage.

All those functions can be done by you with the "advanced" APIs, which we'll see in a bit.

BBOA1INV does it all for you, which is why it's such a simple API to use.

Exercise 2a illustrated a single "invoke" ... useful for validating the environment but not
representing reality. WOLA shines when it gets to work again and again and again across the
established registration.

That's what we'll do next. We're going to put in a loop.

Overview of Exercise 2b - Looping BBOA1INV

It's important to understand that BBOA1INV may be issued again and again within an
established registration.

Exercise 2b is going to put a loop structure around the BBOA1INV block of code.

BBOA1REG and BBOA1URG portions of code

The BBOA1REG and BBOA1URG portions of the code remain unchanged from earlier
exercises. The working storage definitions for those APIs is exactly the same.

BBOA1INV portion of code

The BBOA1INV portion of code remains largely unchanged.

We modified the text-msg a bit to include the loop count number into the message itself.
This allows us to see that BBOA1INV is indeed processing unique requests each time.

20 The InfoCenter refers to them as "primitives." Main point: APIs with more granular control of behavior.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 26 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

(portions of unchanged code clipped to save space)

 * Working Variables
 01 text-msg PIC X(40) VALUE SPACES.
 01 text-msg-with-counter PIC X(45) VALUE SPACES.
 01 stop-loop-flag PIC 9(1) COMP VALUE 0.
 01 loop-limit PIC 9(4) COMP VALUE 0.
 01 loop-counter PIC 9(4) COMP VALUE 0.
 01 loop-counter-text PIC X(5) VALUE SPACES.

(portions of unchanged code clipped to save space)

 MOVE 10 TO loop-limit.

(portions of unchanged code clipped to save space)

 PERFORM UNTIL loop-counter EQUAL loop-limit

 COMPUTE loop-counter = loop-counter + 1

 MOVE loop-counter TO loop-counter-text

 STRING
 loop-counter-text DELIMITED BY SIZE
 text-msg DELIMITED BY SIZE
 INTO text-msg-with-counter
 END-STRING

 MOVE text-msg-with-counter TO rqst-area
 MOVE LENGTH OF rqst-area TO rqst-area-length
 MOVE rqst-area-length TO resp-area-length
 INSPECT service-name CONVERTING ' ' to LOW-VALUES

 SET rqst-area-addr TO ADDRESS OF rqst-area
 SET resp-area-addr TO ADDRESS OF resp-area

 CALL 'BBOA1INV' USING
 register-name,
 rqst-type,
 service-name,
 service-name-length,
 rqst-area-addr,
 rqst-area-length,
 resp-area-addr,
 resp-area-length,
 wait-time,
 rc,
 rsn,
 rv

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1INV problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Message sent: " rqst-area
 DISPLAY "Message back: " resp-area
 END-IF

 END-PERFORM.

Notes:

1. These are variables to control the loop and to get the loop21 number into the text-msg string literal.

2. Looping for this run limited to 10 iterations.

21 There may well be a more elegant way in COBOL to loop. The author's last formal programming education consists of
FORTRAN on punched cards back in 1979. Ahh ... the memories. J

© 2010, IBM Corporation
Americas Advanced Technical Skills - 27 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

4

5

6

WP101490 – The WOLA Native APIs ... a COBOL Primer

3. The loop is contained with a PERFORM / END-PERFORM block.

4. Some minor housekeeping to prepare for the concatenation of the loop counter to the string literal.

5. The same as Exercise 2a, except the request message is the string with the loop counter.

6. DISPLAY the request in and response back.

The output in SYSOUT should looks like this:

Successfully registered into S1CELL
Message sent: 0001 This is a test message
Message back: 0001 This is a test message
Message sent: 0002 This is a test message
Message back: 0002 This is a test message
Message sent: 0003 This is a test message
Message back: 0003 This is a test message
Message sent: 0004 This is a test message
Message back: 0004 This is a test message
Message sent: 0005 This is a test message
Message back: 0005 This is a test message
Message sent: 0006 This is a test message
Message back: 0006 This is a test message
Message sent: 0007 This is a test message
Message back: 0007 This is a test message
Message sent: 0008 This is a test message
Message back: 0008 This is a test message
Message sent: 0009 This is a test message
Message back: 0009 This is a test message
Message sent: 0010 This is a test message
Message back: 0010 This is a test message
Successfully unregistered from S1CELL

Perform Exercise 2b

Do the following:

Copy the supplied sample exer2b.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

If you received anything other than RC=0, then consult the InfoCenter's API page and
analyze the cause of the problem. Correct, recompile and re-run.

Increase the value of loop-limit and re-run.

Wrap-up of Exercise 2b

Exercise 2b was essentially the same as 2a except for a bit more COBOL to build and control a
loop. You saw that multiple BBOA1INV calls can be performed within a single REG / URG.

Moving on -- the "advanced" inbound APIs

As we mentioned, BBOA1INV really a packaging of other APIs into a simplified format.

Note: BBOA1INV may work perfectly well for what you need to accomplish. If so, then you don't really
need to concern yourself with the more primitive inbound APIs.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 28 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

But if you want finer control of the inbound behavior then the other inbound APIs come into play.

Here's a picture22 that shows the relationship of BBOA1INV to these other APIs:

A brief explanation of those APIs ... (and remember, these too operate within a registration, so
BBOA1REG and BBOA1URG is required, just as it was for BBOA1INV):

BBOA1CNG "CNG" is short for "connection get." This requests a connection from the connection pool
established with BBOA1REG. WOLA returns a connection to your program with a
connection handle. That connection handle is used with the other APIs as you'll see.

BBOA1SRQ "SRQ" is short for "send request." This sends the message to the target service over the
connection named with connection-handle. BBOA1SRQ has two modes: synchronous
and asynchronous. They determine when control is returned to your program. The simpler
mode is synchronous, which means your program waits for WOLA to return control the
response is ready. We'll see asynchronous used a bit later.

BBOA1GET "GET" is short for ... well, "get." It pulls the response from the connection and places it in
your working storage.

BBOA1CNR "CNR" is short for "connection release." This returns the connection back to the pool.

Three quick notes:
• As you would imagine, using these APIs implies more parameters to work with.

• Your program assumes the responsibility of good housekeeping. For instance, failure to return connections to the
pool could mean exhaustion of the thread pool.

• That said, it is possible to re-use the same connection over and over before releasing it back to the pool. That
would be a way to increase efficiency even further.

Overview of Exercise 2c - single synchronous BBOA1SRQ and BBOA1GET

In this exercise we'll keep BBOA1REG and BBOA1URG just as they were.

We'll drop the use of BBOA1INV.

Instead, we'll use BBOA1CNG, BBOA1SRQ, BBOA1GET and BBOA1CNR for a single invocation23
inbound to the target EJB in WAS.

A review of the Exercise 2c code:

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER2C.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * API Parms

22 This is from the "Design and Planning Guide" PDF from the WP101490 Techdoc.
23 In Exercise 2d we'll wrap a loop around that.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 29 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

 (portions of unchanged code clipped to save space)
 01 connect-handle PIC X(12) VALUE LOW-VALUES.
 (portions of unchanged code clipped to save space)
 01 SRQasync PIC 9(8) COMP VALUE 0.
 (portions of unchanged code clipped to save space)
 * BBOA1CNG - get connection

 MOVE 0 TO SRQasync.

 CALL 'BBOA1CNG' USING
 register-name,
 connect-handle,
 wait-time,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1CNG problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 * BBOA1SRQ - setup and send

 INSPECT service-name CONVERTING ' ' to LOW-VALUES

 MOVE text-msg TO rqst-area
 MOVE LENGTH OF rqst-area TO rqst-area-length
 MOVE rqst-area-length TO resp-area-length

 SET rqst-area-addr TO ADDRESS OF rqst-area

 CALL 'BBOA1SRQ' USING
 connect-handle,
 rqst-type,
 service-name,
 service-name-length,
 rqst-area-addr,
 rqst-area-length,
 SRQasync,
 resp-area-length,
 rc,
 rsn

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1SRQ problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF

 SET resp-area-addr TO ADDRESS OF resp-area

 CALL 'BBOA1GET' USING
 connect-handle,
 resp-area-addr,
 resp-area-length,
 rc,
 rsn,
 rv

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1GET problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "CNG,SRQ,GET sent: " rqst-area
 DISPLAY "CNG,SRQ,GET back: " resp-area
 END-IF

© 2010, IBM Corporation
Americas Advanced Technical Skills - 30 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

4

5

6

7

WP101490 – The WOLA Native APIs ... a COBOL Primer

 CALL 'BBOA1CNR' USING
 connect-handle,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1CNR problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.
 (BBOA1URG code the same as before)

Notes:

1. The BBOA1CNG API (get connection) returns the handle of the connection retrieved from the pool.
This variable stores that value so the specific connection can be referenced on the other APIs.

Further, the BBOA1SRQ API (send request) has two modes: synchronous and asynchronous24. A
binary flag is used to determine which mode it will operate.

2. Here we set the async flag to 0, which means not asynchonous, therefore it means run in
synchronous mode. (Program issues SRQ and waits for control to be returned.)

3. We call the BBOA1CNG API to get a connection from the pool. It returns connection-handle.

4. Same kind of housekeeping we did for BBOA1INV in the earlier exercises.

5. We call the BBOA1SRQ API to send the request. We specify the connection-handle we got from CNG,
and we specify synchronous mode by passing 0 for the async flag.

6. Because SRQ was called synchronously, we may assume control does not come back to us until a
message is ready to get. So we may at this point call BBOA1GET with the connection-handle.

7. If RC=0 from BBOA1GET then we display a success message.

8. We call BBOA1CNR to release the connection back to the pool.

The output in SYSOUT should looks like this:

Successfully registered into S1CELL
CNG,SRQ,GET sent: This is a test message
CNG,SRQ,GET back: This is a test message
Successfully uregistered from S1CELL

Perform Exercise 2c

Do the following:

Copy the supplied sample exer2c.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

If you received anything other than RC=0, then consult the InfoCenter's API page and
analyze the cause of the problem. Correct, recompile and re-run.

24 As mentioned, synchronous means control is held by WOLA until a response is received; asynchronous means control is
returned immediately. Synchronous is "easier" because you simply issue and wait. Asynchronous requires a bit more
programming on your part, but it allows your program to go "do other stuff" while the request is being processed by WAS.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 31 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

8

WP101490 – The WOLA Native APIs ... a COBOL Primer

Wrap-up of Exercise 2c

We had this coded in a way that used more APIs to do the same thing as BBOA1INV. In
particular, the use of async=0 made this exercise just like the BBOA1INV exercises.

With the primitives and when operating in async=1 mode (we'll see this later) it's possible to
multi-thread and have many requests into WAS at the same time while your program maintains
control and does other work simultaneously. Obviously that requires more programming by you;
specifically, it requires that your program come back and use the BBOA1RCL API to see if a
response has returned for a specific connection handle (again, we'll see this later).

Overview of Exercise 2d -- looping BBOA1SRQ and BBOA1GET

We're now going to wrap a loop around these primitives. Just like with the BBOA1INV loop
exercise, the API parameters don't change just because there's a loop. The same holds true
here. So we won't review the code ... it's just like Exercise 2c but with a PERFORM loop.

But a question arises: where does the loop start and end? Do we include the connection get
and connection release (CNG and CNR) inside or outside the loop?

It will work either way. But for maximum efficiency you would re-use the connection multiple
times before returning it to the pool25.

With this sample we'll get a single connection, loop, and then release the connection:

Perform Exercise 2d

Do the following:

Copy the supplied sample exer2d.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

If you received anything other than RC=0, then consult the InfoCenter's API page and
analyze the cause of the problem. Correct, recompile and re-run.

25 Be aware that if you have multiple connections active concurrently then the connection-handle you use on a given
BBOA1GET becomes very important. Your program must track and use the handles correctly.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 32 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Wrap-up of Exercise 2d

The key point emphasized with this exercise is that repeated invocations with BBOA1SRQ and
BBOA1GET works. We also drew your attention to the placement of CNG and CNR with respect
to loops.

Exercise 2c and 2d were both synchronous invocations of BBOA1SRQ. Let's now explore
asynchronous BBOA1SRQ.

Overview of "synchronous" and "asynchronous" with respect to BBOA1SRQ and BBOA1RCL

The fundamental issue here is when control is returned to your program:

• Asynchronous -- right away

• Synchronous -- when a response is ready to be processed

Synchronous is the "simplest" in that you call the API and do nothing until control is returned
back to you. Then you may assume there's a response available and process that.

Asynchronous implies calling the API and having control returned back to your program
immediately. That frees your program to go do other things without having to wait on each
response.

Note: This allows you to issue multiple requests over different connection handles and then come back
and process the responses when they come back. It changes your program from being
sequentially dependent.

However, it puts the responsibility on your program to check back to see if the response has
returned. That is done with the BBOA1RCL API. That API is a check for the length of a
response message.

Here's what the InfoCenter has for BBOA1RCL:

It checks the named connectionhandle to see if a response is waiting and if so it returns the
length with the responsedatalen output parameter.

But if no response has yet arrived, the responsedatalen output value is set to all x'FF'.

But there's a twist ... BBOA1RCL has an async parameter just like BBOA1SRQ did. There is a
hierarchical relationship between the two APIs and their async parameters. The following table
illustrates that relationship.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 33 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

BBOA1SRQ,async=0
(synchronous)

Control is held until response
received.

When response received the
response length is returned on
responsedatalen output
parameter of BBOA1SRQ.

BBOA1RCL is not necessary.

Control is held by WOLA until
response is received.

 Response length is returned on
responsedatalen output
parameter of BBOA1SRQ.

BBOA1SRQ,async=1
(asynchronous)

Control is returned to your program immediately. For responses that require time
to generate and return, this allows your program to process other work during wait

for response to come back.

But ... it is your responsibility to determine when response is ready.

Therefore you must use BBOA1RCL for that purpose
Two modes of BBOA1RCL usage ...

BBOA1RCL,async=0
(synchronous)

BBOA1RCL,async=1
(asynchronous)

If response
available then

length provided on
responsedatalen
output parameter of

BBOA1RCL

If response not
available then

control is held until
response is

available. At that
time the length

provided on
responsedatalen
output parameter of

BBOA1RCL

If response available
then length provided on
responsedatalen
output parameter of

BBOA1RCL

If response not
available then

responsedatalen
output parameter of
BBOA1RCL set to all
x'FF' and control

returns to your
program.

You must come back
and call BBOA1RCL

again and repeat until
message length

returned.

We saw this with
Exercises 2c and 2d

(single invoke and looping)

We'll see this with
Exercises 2e and 2f

(single invoke and looping)

We'll see this with
Exercises 2g and 2h

(single invoke and looping)

Overview of Exercises 2e and 2f - asynchronous BBOA1SRQ with synchronous BBOA1RCL

This sample will show the issuance of BBOA1SRQ with async=1 set, then followed up with
BBOA1RCL with async=0. This is the simpler of the two BBOA1RCL scenarios because we only
need to worry about issuing BBOA1RCL once: with async=0 control is held until a message is
returned.

Note: With async=1 on BBOA1RCL the message length may come back x'FFFFFFFF', indicating no
message is yet ready. So you have to repeat the BBOA1RCL until you get a message length
indicating the response is ready.

A review of the Exercise 2e code:

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER2E.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * API Parms
 : (other definitions same as before)
 01 SRQasync PIC 9(8) COMP VALUE 0.
 01 RCLasync PIC 9(8) COMP VALUE 0.
 : (other definitions same as before)
 * Procedures Section
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 : (BBOA1REG same as before)
 * Asynch BBOA1SRQ with synchronous BBOA1RCL

 MOVE 1 TO SRQasync.
 MOVE 0 TO RCLasync.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 34 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

WP101490 – The WOLA Native APIs ... a COBOL Primer

 CALL 'BBOA1CNG' USING ...
 : (BBOA1CNG same as before)
 : (housekeeping to issue BBOA1SRQ same as before)

 CALL 'BBOA1SRQ' USING ...
 : (BBOA1SRQ same as before, except variable SRQasync is now 1 rather than 0)

 PERFORM Other-Work.
 DISPLAY "This is your program coming back from other work".

 * RCLasync set to 0 (synchronous) above

 CALL 'BBOA1RCL' USING
 connect-handle,
 RCLasync,
 resp-area-length,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1RCL problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully back from synchronous BBOA1RCL"
 END-IF.

 : (what follows same as before -- GET, CNR, URG, etc.)

Other-Work.
 DISPLAY "Simulation of 'other work' when async=1".

/*

Notes:

1. The SRQasync variable we saw before; what's new is the RCLasync. We needed to have SRQ be 1
and RCL be 0 for this exercise. We have separate variables for each API simply to keep things
clean and separate.

2. Here we set the SRQ value to 1 (asynchronous) and the RCL value to 0 (asynchronous).

3. BBOA1SRQ is called as before, but this time with async=1. That means program control is returned
to us immediately. We are free to go off and do other work ...

4. ... which is what we do with a very simple PERFORM call that comes right back.

5. We then drop into BBOA1RCL to get the response length. The variable RCLasync was set to 0
earlier, so this call to RCL will be synchronous. That means program control does not return to us
until a response has been received, and at that time we can pull the response length from output
parameter resp-area-length. That is then used on the BBOA1GET, just as before.

6. Our funny little "other work" simulator.

The output in SYSOUT should looks like this:

Successfully registered into S1CELL
Successfully issued async BBOA1SRQ
Simulation of 'other work' when async=1
This is your program coming back from other work
Successfully back from synchronous BBOA1RCL
Message sent: This is a test message
Message back: This is a test message
Successfully unregistered from S1CELL

© 2010, IBM Corporation
Americas Advanced Technical Skills - 35 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

4

5

6

3

WP101490 – The WOLA Native APIs ... a COBOL Primer

Perform Exercise 2e

Do the following:

Copy the supplied sample exer2e.txt to your system. Update the compile and link
edit values according to your system.

Update the daemongroup, node-name and server-name values to match your WAS
cell values.

Compile the program. Fix any errors that result in a RC other than 0.

Execute the program using the runprog.txt JCL supplied in the Techdoc ZIP file.

If you received anything other than RC=0, then consult the InfoCenter's API page and
analyze the cause of the problem. Correct, recompile and re-run.

Perform Exercise 2f

Exercise 2f is simply 2e except with a loop structure that starts after BBOA1CNG and ends before
BBOA1CNR. It loops by default 10 times, and each time it branches off to do "other work" after
issuing the asynchronous BBOA1SRQ.

Copy, update, compile and execute as before.

Wrap-up of Exercises 2e and 2f

In these exercises we began the illustration of asynchronous operations. As noted earlier we
have two APIs on which async is a parameter: BBOA1SRQ and BBOA1RCL. In Exercise 2e we
set async=1 on SRQ. That required us to then use BBOA1RCL to get the message length.

But we held BBOA1RCL to async=0 to keep the exercise a bit simpler. Simpler because we
could issue BBOA1RCL, async=0 and simply wait for WOLA to tell us to proceed.

Exercise 2f simply put a loop structure around the SRQ-RCL-GET sequence.

Now we're ready to show SRQ and RCL both with async=1. That gives us maximum freedom
to "go do other work" while WAS responds; but it also puts some responsibility on us to code
checking logic into our program.

Overview of Exercise 2g - BBOA1SRQ and BBOA1RCL both set to async=1, no loop

These are nearly the same as 2e and 2f, except we'll set RCLasync to 1. But it involves a bit
more than that because we have to take into account the possibility that a response is not yet
back from WAS. That implies a test of the responsedataln parameter of BBOA1RCL:

• If responsedataln equal to x'FFFFFFFF' then no response is yet returned. That
means your program is free to go do other work. Eventually you have to come back and
test again.

• If responsedataln is not equal to x'FFFFFFFF' then a response has been returned,
and its length is specified by responsedataln. You then use BBOA1GET with the
connection handle and response length to get the message.

Because this introduces a few new things we'll show the sample in its entirety.

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER2G.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 36 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

 * API Parms
 01 daemongroup PIC X(8) VALUE LOW-VALUES.
 01 node-name PIC X(8).
 01 server-name PIC X(8).
 01 register-name PIC X(12) VALUE SPACES.
 01 minconn PIC 9(8) COMP VALUE 1.
 01 maxconn PIC 9(8) COMP VALUE 10.
 01 regopts PIC 9(8) COMP VALUE 0.
 01 urgopts PIC 9(8) COMP VALUE 0.
 01 service-name PIC X(255).
 01 service-name-length PIC 9(8) COMP.
 01 rqst-area PIC X(100) VALUE SPACES.
 01 rqst-area-addr USAGE POINTER.
 01 rqst-area-length PIC 9(8) COMP VALUE 100.
 01 resp-area PIC X(100) VALUE SPACES.
 01 resp-area-addr USAGE POINTER.
 01 resp-area-length PIC 9(8) COMP VALUE 100.
 01 resp-area-length-char REDEFINES resp-area-length PIC X(4).
 01 connect-handle PIC X(12) VALUE LOW-VALUES.
 01 wait-time PIC 9(8) USAGE BINARY.
 01 rqst-type PIC 9(8) COMP VALUE 1.
 01 SRQasync PIC 9(8) COMP VALUE 0.
 01 RCLasync PIC 9(8) COMP VALUE 0.
 01 rc PIC 9(8) COMP VALUE 0.
 01 rsn PIC 9(8) COMP VALUE 0.
 01 rv PIC 9(8) COMP VALUE 0.
 * Working Variables
 01 text-msg PIC X(40) VALUE SPACES.
 01 good-RCL-flag PIC 9(1) COMP VALUE 0.
 01 RCL-attempts PIC 9(4) COMP VALUE 0.
 01 other-work-counter PIC 9(8) COMP VALUE 0.

 * Procedures Section
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 MOVE 'EXER2G' TO register-name.
 MOVE 'S1CELL' TO daemongroup.
 MOVE 'S1NODEC' TO node-name.
 MOVE 'S1SR01C' TO server-name.
 *
 MOVE 'This is a test message' TO text-msg.
 MOVE 'ejb/com/ibm/ola/olasample1_echoHome'
 TO service-name.

 INSPECT daemongroup CONVERTING ' ' to LOW-VALUES.

 CALL 'BBOA1REG' USING
 daemongroup,
 node-name,
 server-name,
 register-name,
 minconn,
 maxconn,
 regopts,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1REG problem -- rc/rsn : " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully registered into " daemongroup
 END-IF.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 37 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

WP101490 – The WOLA Native APIs ... a COBOL Primer

 * Asynch BBOA1SRQ with synchronous BBOA1RCL

 MOVE 1 TO SRQasync.
 MOVE 1 TO RCLasync.

 CALL 'BBOA1CNG' USING
 register-name,
 connect-handle,
 wait-time,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1CNG problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 INSPECT service-name CONVERTING ' ' to LOW-VALUES.

 MOVE text-msg TO rqst-area.
 MOVE LENGTH OF rqst-area TO rqst-area-length.

 SET rqst-area-addr TO ADDRESS OF rqst-area.
 SET resp-area-addr TO ADDRESS OF resp-area.

 CALL 'BBOA1SRQ' USING
 connect-handle,
 rqst-type,
 service-name,
 service-name-length,
 rqst-area-addr,
 rqst-area-length,
 SRQasync,
 resp-area-length,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1SRQ problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 PERFORM UNTIL good-RCL-flag EQUAL 1

 PERFORM Other-Work

 CALL 'BBOA1RCL' USING
 connect-handle,
 RCLasync,
 resp-area-length,
 rc,
 rsn

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1RCL problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF

 IF resp-area-length-char EQUAL HIGH-VALUES THEN
 COMPUTE RCL-attempts = RCL-attempts + 1
 ELSE
 DISPLAY "Good RCL on attempt: " RCL-attempts
 MOVE 0 TO RCL-attempts
 MOVE 1 TO good-RCL-flag
 END-IF

 END-PERFORM.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 38 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

5

8

9

6

4

10

7

WP101490 – The WOLA Native APIs ... a COBOL Primer

 CALL 'BBOA1GET' USING
 connect-handle,
 resp-area-addr,
 resp-area-length,
 rc,
 rsn,
 rv

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1GET problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Message sent: " rqst-area
 DISPLAY "Message back: " resp-area
 END-IF

 CALL 'BBOA1CNR' USING
 connect-handle,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1CNR problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 * Unregister from the Daemon group using BBOA1URG API *

 CALL 'BBOA1URG' USING
 register-name,
 urgopts,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1URG problem -- rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully unregistered from " daemongroup
 END-IF.

 GOBACK.

 * Used to doing other work when asych=1 specified

 Other-Work.
 PERFORM UNTIL other-work-counter EQUAL 10000
 COMPUTE other-work-counter = other-work-counter + 1
 END-PERFORM.
 MOVE 0 TO other-work-counter.

 * Section used to exit batch if any API returned RC>0

 Bad-RC.

 DISPLAY "OLA - EXITING program due to non-RC=0."
 GOBACK.

/*

Notes:

1. All the values defined at the top of the working storage section are as they have been in prior
exercises.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 39 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

11

WP101490 – The WOLA Native APIs ... a COBOL Primer

2. The resp-area-length definition is the same as before, but we've added resp-area-length-
char to provide us with a simple way to check for equality with x'FFFFFFFF'.

3. We added some variables to control and report on the PERFORM loop we used when checking if
BBOA1RCL came back with a response length.

4. Both SRQasync and RCLasync are set to 1 for asynchronous operations.

5. This is the start of the PERFORM loop in which the BBOA1RCL check is done.

6. This PERFORM points down to block 11 which simulates "other work" being done while the
asynchronous operations of BBOA1SRQ and BBOA1RCL are in process..

Note: This is a very poor illustration, but it is adequate for the purposes of this document.

7. The BBOA1RCL API is called with the value of RCLasync set to 1 (asynchronous)

8. We check if resp-area-length-char26 is equal to HIGH-VALUES. If there is no response then
this test will be true. Therefore, if resp-area-length-char = HIGH-VALUES then no response
ready so increment a counter by 1 and continue.

9. However, If it does not equal HIGH-VALUES then we assume a response has been received and the
value of resp-data-length is used on the BBOA1GET API. The number of RCL attempts is
reported, then we clear the RCL-attempts counter. Then we set the good-RCL-flag to 1.

10. The END-PERFORM for the earlier PERFORM that did the good-RCL-flag check. If we received a
good response length then the flag value will be 1 and we'll drop out of this PERFORM. But if it's 0 we
go do "other work" and then come back to try again.

11. This is our simple "other work" ... a counter that increments up to 10000 then clears the counter and
returns.

The output in SYSOUT may looks something like this:

Successfully registered into S1CELL
Good RCL on attempt: 0016 27
Message sent: This is a test message
Message back: This is a test message
Successfully unregistered from S1CELL

Overview of Exercise 2h - BBOA1SRQ and BBOA1RCL both set to async=1, with loop

This is Exercise 2g but with a loop wrappered around the SRQ-RCL-GET sequence.

The output looks a little different because of the loop:
Successfully registered into S1CELL
Good RCL on attempt: 0036 (On the first iteration of the loop it took 36 "other work" attempts before response ready)
Message sent: 0001 This is a test message
Message back: 0001 This is a test message
 : (Iterations 2 through 9 clipped to save space)
Good RCL on attempt: 0012 (On the 10th iteration of the loop it took only 12)
Message sent: 0010 This is a test message
Message back: 0010 This is a test message
Successfully unregistered from S1CELL

Perform Exercises 2g and 2h

As before ...

Copy, update, compile and execute as before.

26 That is, the the PIC X(4) value that redefines the PIC 9(8) original resp-area-length value.
27 How many "RCL attempts" you see with this sample is a function of how quickly WAS responds. Our "other work" is a poor

illustration because it takes a compiled COBOL program very little time to count to 10000.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 40 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Wrap-up of Exercises 2g and 2h

These exercises showed one of the more complex scenarios; that is, using BBOA1SRQ and
BBOA1RCL in asynchronous mode. As a recap:

• BBOA1SRQ with async=1 created the need to then use BBOA1RCL

• BBOA1RCL with async=1 required the code to take into account that the response may
not yet be back.

There was an additional level of level of complexity we could have shown but did not: issuing
multiple BBOA1SRQ with async=1 and thus having multiple requests in WAS at once. The use
of the APIs is no different -- but the complexity of the COBOL programming goes up a notch or
two and ... well ... the author just isn't that good a programmer J.

Wrap-up of the Unit 2 -- Inbound APIs

In this unit we explored the inbound APIs. And by "inbound" we mean that the request
invocation is initiated from the external address space and destined for an EJB in WAS z/OS.28

We saw that the APIs can be very simple or a bit more complex, depending on the degree of
control you desire:

● BBOA1INV -- simple, but it is a synchronous model and it requires that you know the
maximum length of the response.

● BBOA1SRQ -- more control, but it requires the use of BBOA1CNG, BBOA1GET, BBOA1CNR
and perhaps also BBOA1RCL depending on the factors we spelled out in the exercises.

We are now ready to begin exploring the outbound APIs. That means the initial request is
initiated by the Java program in WAS z/OS, and the target is an external address space
program such as batch, CICS or USS.

28 As mentioned earlier, the WAS EJB will return a response, so the WOLA channel goes both ways. The key for
understanding "inbound" and "outbound" with respect to the APIs is ... who initiates the request?

© 2010, IBM Corporation
Americas Advanced Technical Skills - 41 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Unit 3: Exploring the outbound API model
Right from the start we have to very clearly differentiate which APIs we're speaking of.

In Unit 2 we focused entirely on what we call the "native" APIs -- those used by COBOL29. We
assumed the Java code was properly implemented. That was a safe assumption because we were
using the supplied sample EJB application which echoed back what it was sent.

In this unit we'll turn our attention to the outbound APIs. As we noted earlier, "outbound" implies
that the request is initiated from inside WAS and the target is the external address space. That
implies that Java code will do the initiation.

The Java programming interfaces

There are Java classes and methods related to WOLA30. We'll cover some of that under "A
picture representation of the relationships when using WOLA" on page 55. For now take a look
at this picture:

On the Java side we have two key classes as shown. ConnectionSpecImpl is used to
associate the Java program with the registration name ... that is, what was used by the other
program on BBOA1REG. InteractionSpecImpl is what associates the Java program with
the "service name" ... that is, what was used by the other program on the BBOA1SRV31. That's a
very simplified explanation, but good enough for now.

What we're interested in are the APIs used on the non-Java side. Those are APIs used to "host
a service" and send a response back.

Important: When the external address space is CICS

If the program you wish to communicate with outside WAS z/OS resides in CICS, you may not
have to write to the APIs at all. That's because the WOLA support for CICS includes function
that "hides" all that from you.

If your CICS program can be invoked with a CICS EXEC LINK, then it is eligible to be invoked
over WOLA using the BBO$ Link Server function. See "A picture representation of the
relationships when using WOLA" on page 55 for more on this.

Preparing the environment

It's the same as we saw under "Exercise Preparation" on page 18.

29 Or C/C++, High Level Assembler or PL/I, but this document is focused on COBOL.
30 InfoCenter, search on tdat_useoutboundconnection
31 Or BBOA1RCA/BBOA1RCS as you'll see in this unit.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 42 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

The concept of "hosting a service"

In Unit 2 the COBOL program sent requests into WAS and we simply assumed something was
on the WAS side to catch the request and respond. That something was the WOLA JCA
adapter and the OLASample1.ear sample application.

When we go the other direction -- WAS into batch COBOL -- something has to be there ready to
catch the request and respond. That something is the batch COBOL program. And it involves
using the outbound APIs32.

At its most basic, this involves two things:

1. Having the COBOL program register into WAS. That's the BBOA1REG API, and its done
in exactly the same way we saw back in the earlier exercises.

2. Then the COBOL program invokes an API to put itself into a state of readiness to
receive a request. That's a kind of "wait until something arrives" state.

The APIs we'll look at in this unit are these:

Registering and Unregistering with BBOA1REG and BBOA1URG

It's exactly the same as we showed in Unit 2. If the environment is CICS then there is a
potential slight variation to this33.

The important thing to understand about this is that the Java program in WAS must know the
registration name used in order to send a request over. This is drawn out in picture form under
"A picture representation of the relationships when using WOLA" on page 55.

The "service name" role when going outbound

With the inbound model we saw that the "service name" we specified on the BBOA1INV API was
the JNDI name of the target EJB. That's what allowed WOLA to know which Java target to
invoke.

32 Reminder: our use of "inbound" and "outbound" is always from the perspective of WAS z/OS.
33 Having to do with using the BBOC START_SRVR command to perform the registration. The BBOA1REG API is still used, but

it's used within the BBOC control transaction code and thus "under the covers."

© 2010, IBM Corporation
Americas Advanced Technical Skills - 43 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

With outbound we have the same issue -- the calling Java program needs to indicate what it is
to call. Any given registration may have lots of services available. What constitutes the service
name here?

It's a parameter on the BBOA1SRV API34. That creates a "service" within a registration space.
Java programs in WAS therefore need two key pieces of information to invoke the program in
COBOL -- the registration name used on the BBOA1REG API, and the service name used on the
BBO1ASRV API. In picture form35:

Notes:

1. The external program uses BBOA1REG and provides a register name.

2. The external program "hosts a service" and provides a service name.

3. The Java program uses ConnectionSpecImpl and setRegisterName() to specify the
registration pool to connect to.

4. The Java program uses InteractionSpecImpl and setServiceName() to specify the service
within the registration pool it has connected to.

There's an interesting twist to this: if the BBOA1SRV API specifies an asterisk for servicename
parameter, that means it'll accept a request on any service for that registration. The Java-side
program is free to use any string on setServiceName().

We have to be a little careful with that asterisk. Any hosted service using asterisk will grab any
request it sees on that registration pool. If that's what you want, then use asterisk. But if you
want a registration pool to service separate hosted services then that separation is created by
using specific servicename values on the BBOA1SRV API.

Overview of Exercise 3a - BBOA1SRV and BBOA1SRP

This exercise will illustrate a single-pass use of BBOA1SRV and BBOA1SRP. In the next exercise
we'll introduce a loop.

The BBOA1SRV parameters

First, let's take a quick look at what the InfoCenter has to say about the BBOA1SRV API:

Notes:

1. BBOA1SRV requires that a BBOA1REG was called and a registration pool established. This
parameter tells BBOA1SRV which registration pool to use36.

34 Or BBOA1RCA or BBOA1RCL, which are finer-controlled variations on BBOA1SRV.
35 See "A picture representation of the relationships when using WOLA" on page 55.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 44 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

2. This is the "interesting twist" we mentioned earlier -- this may be a specific string or it may be
an asterisk:

• Specific string -- BBOA1SRV listens on just that service name, which means the Java program must
use that exact service name to communicate with this hosted service.

• Asterisk -- BBOA1SRV listens across all service names that come into the registration pool.

For this exercise we'll do both.

3. The length of the data area to receive the message into. This implies you have a sense for
the length of the data, or at least a sense for the maximum length.

4. The connection handle that is returned.

How BBOA1SRV works

Here's a quick couple of points about BBOA1SRV that will help you understand its use a bit
better:

• It is by nature synchronous; that is, when called it takes program control away from your
calling program until the Java side sends a request to it.

• It calls BBOA1CNG under the covers ... that's what gets the connection implied by the
connectionhandle output parameter.

• It calls BBOA1GET under the covers ... that's what pulls the message in.

• It does not "answer back" ... it just processes the message outbound from WAS. We'll use
BBOA1SRP to send an answer back.

The primitives (BBOA1RCA and BBOA1RCS) allow greater control over these.

The Java program used to drive this

This is an outbound model, which means we have to tell the Java program to initiate a
request over to the COBOL program. Further, we have to tell the Java program which
registration pool to use, what service name to use, and what message to send.

The OLASample1.ear sample program we've used up to this point has a web page to do
this sort of thing. But it assumes CICS with the BBO$ link server task. It uses some of the
CICS-specific methods which throw errors if there's no BBO$ link server task present.

So we're supplying a modified version of OLASample1.ear called ATSsample1.ear that
will work with COBOL batch. We supply that in the ZIP file that accompanies the Techdoc.

Note: The ZIP file that accompanies this document on Techdocs includes two sample
programs -- ATSsample1.ear, and ATSSample1-new.ear. The difference is a
single TransactionAttribute of NOT_SUPPORTED. In the README for the ZIP we say
the "new" copy is for V8 while the earlier copy was for V7, but you may find it
necessary to use the "new" copy in later maintenance levels of V7.

In the "Perform Exercise 3a" section we'll show how to access the web page and use it.

ASCII / EBCDIC Conversion

COBOL is operating in EBCDIC and the WAS z/OS Java environment runs in ASCII. For
the inbound we didn't bother doing any conversion. The EBCDIC characters displayed in
the WAS server SYSPRINT in a funny way. But our objective of showing WOLA work was
served well enough.

For the outbound we'll do some conversion so the message returned to the browser is
readable. It's a way of showing things in a cleaner, more comfortable way.

36 Up to this point we've shown the COBOL programs issuing one BBOA1REG and establishing a single named registration
pool. But in truth a program could establish multiple registrations with different names. Given that, we have to tell
BBOA1SRV which one of what may be several registrations to listen on.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 45 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

A review of Exercise 3a code

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXER3A.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * REG and URG parms
 01 daemongroup PIC X(8) VALUE LOW-VALUES.
 01 node-name PIC X(8).
 01 server-name PIC X(8).
 01 register-name PIC X(12) VALUE SPACES.
 01 minconn PIC 9(8) COMP VALUE 1.
 01 maxconn PIC 9(8) COMP VALUE 10.
 01 regopts PIC 9(8) COMP VALUE 0.
 01 urgopts PIC 9(8) COMP VALUE 0.
 01 rc PIC 9(8) COMP VALUE 0.
 01 rsn PIC 9(8) COMP VALUE 0.
 01 rv PIC 9(8) COMP VALUE 0.
 * SRV and SRP parms
 01 SRV-service-name PIC X(255).
 01 SRV-service-name-length PIC 9(8) COMP.
 01 SRV-rqst-area PIC X(120).
 01 SRV-rqst-area-addr USAGE POINTER.
 01 SRV-rqst-area-length PIC 9(8) COMP.
 01 SRP-resp-area PIC X(120).
 01 SRP-resp-area-addr USAGE POINTER.
 01 SRP-resp-area-length PIC 9(8) COMP.
 01 connect-handle PIC X(12).
 01 wait-time PIC 9(8) USAGE BINARY.
 * ASCII/ECDIC Conversion Variables
 01 EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.
 01 ASCII-CCSID PIC 9(4) BINARY VALUE 819.
 01 INPUT-EBCDIC PIC X(120).
 01 OUTPUT-EBCDIC PIC X(120).
 01 INPUT-ASCII PIC X(120).
 01 OUTPUT-ASCII PIC X(120).
 * Working Variables
 01 reply-message PIC X(120).

 * Procedures Section
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 MOVE 'EXER3A' TO register-name.
 MOVE 'S1CELL' TO daemongroup.
 MOVE 'S1NODEC' TO node-name.
 MOVE 'S1SR01C' TO server-name.
 MOVE 'ServiceName' TO SRV-service-name.
 MOVE 'This is my reply back!' TO reply-message.

 INSPECT daemongroup CONVERTING ' ' to LOW-VALUES.

 CALL 'BBOA1REG' USING
 daemongroup,
 node-name,
 server-name,
 register-name,
 minconn,
 maxconn,
 regopts,
 rc,
 rsn.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 46 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

1

2

3

4

5

WP101490 – The WOLA Native APIs ... a COBOL Primer

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1REG problem -- rc/rsn : " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully registered into " daemongroup
 END-IF.

 MOVE LENGTH OF SRV-rqst-area TO SRV-rqst-area-length.
 SET SRV-rqst-area-addr TO ADDRESS OF SRV-rqst-area.
 INSPECT SRV-service-name CONVERTING ' ' to LOW-VALUES.

 CALL 'BBOA1SRV' USING
 register-name,
 SRV-service-name,
 SRV-service-name-length,
 SRV-rqst-area-addr,
 SRV-rqst-area-length,
 connect-handle,
 wait-time,
 rc,
 rsn,
 rv.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1SRV problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 * Data conversion and setup for SRP

 DISPLAY "Your message in original ASCII: " SRV-rqst-area.
 MOVE SRV-rqst-area TO INPUT-ASCII.
 PERFORM ASCII-TO-EBCDIC.
 MOVE OUTPUT-EBCDIC TO SRV-rqst-area.
 DISPLAY "Your message converted to EBCDIC: " SRV-rqst-area.

 DISPLAY "My reply in original EBCDIC: " reply-message.
 MOVE reply-message TO INPUT-EBCDIC.
 PERFORM EBCDIC-TO-ASCII.
 MOVE OUTPUT-ASCII TO SRP-resp-area.
 DISPLAY "My reply converted to ASCII: " SRP-resp-area.

 MOVE LENGTH OF SRP-resp-area TO SRP-resp-area-length.
 SET SRP-resp-area-addr TO ADDRESS OF SRP-resp-area.

 CALL 'BBOA1SRP' USING
 connect-handle,
 SRP-resp-area-addr,
 SRP-resp-area-length,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1SRP problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 CALL 'BBOA1CNR' USING
 connect-handle,
 rc,
 rsn.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 47 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

6

7

8

9

WP101490 – The WOLA Native APIs ... a COBOL Primer

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1CNR problem, rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 END-IF.

 CALL 'BBOA1URG' USING
 register-name,
 urgopts,
 rc,
 rsn.

 IF rc > 0 THEN
 DISPLAY "OLA - BBOA1URG problem -- rc/rsn: " rc "/" rsn
 GO TO Bad-RC
 ELSE
 DISPLAY "Successfully unregistered from " daemongroup
 END-IF.

 GOBACK.

 * Code Page Conversions

 EBCDIC-to-ASCII.
 MOVE FUNCTION DISPLAY-OF
 (FUNCTION NATIONAL-OF (INPUT-EBCDIC EBCDIC-CCSID),
 ASCII-CCSID)
 TO OUTPUT-ASCII.

 ASCII-to-EBCDIC.
 MOVE FUNCTION DISPLAY-OF
 (FUNCTION NATIONAL-OF (INPUT-ASCII ASCII-CCSID),
 EBCDIC-CCSID)
 TO OUTPUT-EBCDIC.

 * Section used to exit batch if any API returned RC>0

 Bad-RC.
 DISPLAY "OLA - EXITING program due to non-RC=0."
 GOBACK.

/*

Notes:

1. Registration data values same as before.

2. The BBOA1SRV and BBOA1SRP APIs have very similar names and purposes. We prefix them
with SRV and SRP to making the illustration a bit easier to follow.

3. Data values used to translate ASCII and EBCDIC. The routine to do that is block 10.

4. Setting up a fixed reply message rather than simply echoing back what came from WAS.

5. The service name that will be used by BBOA1SRV. A specific string means the Java code has to
name that specific string. An asterisk would mean BBOA1SRV listens for any service name
request coming in on the named registration.

6. The BBOA1SRV API is called. Note connect-handle ... that is an output value you'll use on the
BBOA1SRP to send a response back.

7. Some housekeeping to convert ASCII / EBCDIC and set up the BBOA1SRP call back.

8. The BBOA1SRP API is called ... this sends a response back to the Java caller.

9. We release the connection using BBOA1CNR and the connect-handle returned on BBOA1SRV.

10. The EBCDIC / ASCII conversion routines.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 48 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

10

WP101490 – The WOLA Native APIs ... a COBOL Primer

Perform Exercise 3a

In prep for the upcoming exercises, make certain you have:

Access to a COBOL compiler and system link editor

The WOLA modules copied out37 to a load library you can reference from LKED SYSLIB

A WAS z/OS server environment created and operational and enabled for WOLA38.

Then:

Copy the sample exercise to your system, modify the contents to match your compiler
settings, change the cell, node and server short names and compile..

Then:

Install the ATSsample1.ear app39 supplied in the ZIP that accompanies this Techdoc.

It is a simple application and should be simple to install. There is one resource reference and
that should be mapped to your WOLA resource adapter. The JNDI name for that would be
eis/ola if you followed the examples for installation. Be sure to save and synchronize.

Once installed, start the sample ATSSample application.

Access the application with URL:

http://<host>:<port>/ATSSample1Web/

You'll see the following screen:

Notes:

1. Data to send to the batch COBOL that's hosting the service

2. The register name used on the BBOA1REG API of the exercise40

37 The olaInstall.sh does that for you. InfoCenter search: tdat_enableconnector for the syntax.
38 InfoCenter: tdat_enableconnector. We covered this in summary on page 18.
39 See page 45 for an important note about which sample app to use, ATSsample1 or ATSSample1-new.
40 For Exercise 3a the value supplied with the sample is EXER3A

© 2010, IBM Corporation
Americas Advanced Technical Skills - 49 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

3. The service name used on the BBOA1SRV API of the exercise41

4. The number of times you want the Java program to loop and invoke the COBOL program42

5. The button used to send the request over WOLA to the COBOL program.

Fill in the values and click the button at the bottom of the page.

On the browser screen you should see the following:

You'll find that the batch program will have ended (no loop).

In the batch program SYSOUT you should see:

Run the scenario again, but do the following:

Update the source COBOL and change the value of SRV-service-name to an asterisk
(*). Keep it in the single quotes to maintain it as a string.

Recompile and re-run the program

From the browser, use the proper register name but use any string (or no string at all) on
the service name field. You should see the same results. Note how the service name
as an asterisk means the service name used from the Java side is no longer so critical.

Wrap-up of Exercise 3a

BBOA1SRV is a way to "host a service" so that Java programs in WAS z/OS may call out to the
service. It provides the "something" for the Java program to talk to43.

BBOA1SRV is another one of those APIs that packages "primitive" APIs under the covers. SRV
is simple to use, but it lacks some of the granular flexibility of the primitives.

We'll begin to look at the primitives beginning with Exercise 3c. First we'll wrapper a loop inside
Exercise 3a to see how this function could be used multiple times.

Overview of Exercise 3b - BBOA1SRV, BBOA1SRP with loop

Putting a loop around this sequence of APIs doesn't really change the API usage at all. For that
reason we won't show the whole source in this document. But we will note a few things:

● The key thing is the placement of the loop. It starts just before BBOA1SRV and ends just after
BBOA1CNR.

● We added a loop counter string to the front-end of the response so proof of it actually looping is
provided in the feedback on the browser.

41 For Exercise 3a the value supplied with the sample is ServiceName
42 Use 1 for exercises with no loop (3a); or some reasonable number for programs that have a loop (3b)
43 Reminder: If CICS is the external address space you have the option of avoiding coding any of this. The supplied BBO$

link server task implements these APIs in a way that "hides" it all from you and your programs.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 50 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

● We added an EVALUATE function to check if the following strings sent:

◦ If the string STOP is sent, then a flag is set and the COBOL PERFORM loop is exited.

◦ If the string RESET is sent, the loop counter is set back to 0.

Perform Exercise 3b

Similar to Exercise 3a:

Copy the sample to your system; update and compile

From the browser, leave the "Number of times to call external address space" set at 1.

Type in a string to send over and then click the button.

Notice the response back has a loop counter pre-pended.

Use the browser "back" button to return to the input screen.

Do that as many times as you'd like. Issue RESET to reset the loop counter back to 0;
issue STOP to exit the loop and stop the batch program.

Perform a loop using the programmatic option on the Java side:

Restart the Exercise 3b batch program.

From the browser screen set the number of interations the Java program perform44.

Wrap-up of Exercise 3b

Essentially the same wrap-up as 3a except we put a loop into the mix.

It's now time to leave BBOA1SRV and move to the primitive APIs that "host a service"

Beyond BBOA1SRV -- the primitive BBOA1RCA

As we mentioned earlier, the BBOA1SRV API is one of those APIs that packages some
"primitives" under the covers. Here's a picture illustrating that:

There's a subtle distinction going on between the BBOA1SRV and the more primitive BBOA1RCA.
In summary:

• One of BBOA1SRV's input parameters is: "requestdatalen (input) -- A 32-bit unsigned value
containing the length of the data area to receive the message into." That means you must know
at least the maximum message length coming.

• BBOA1RCA, on the other hand, has "requestdatalen (output) -- A 32-bit unsigned value is
returned containing the length of the data to receive."

BBOA1RCA provides the actual length of the message received that you may use on a
subsequent BBOA1GET API. It also returns the connection-handle on which the message
arrived from WAS. That too is used on BBOA1GET.

44 Temper your initial enthusiasm to slam in a really large number. Start with something reasonable, then work up. J
© 2010, IBM Corporation
Americas Advanced Technical Skills - 51 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

The "A" at the end of RCA means "any" -- BBOA1RCA will accept an outbound message on
whatever connection gets used by WOLA45.

Beyond BBOA1RCA -- an even more "primitive" primative: BBOA1RCS

BBOA1RCS takes this concept one step further:

The synchronous route we'll illustrate with Exercises 3e and 3f.

The asynchronous option we will not illustrate. We discuss this under "What about
asynchronous BBOA1RCS?" on page 53.

The point here is really that BBOA1RCS is even more fine-grained than BBOA1RCA. It requires
you to issue a "get connection" (BBOA1CNG), which then allows you to call BBOA1RCS to listen
on the specific connection received.

The practical distinctions between BBOA1RCA and BBOA1RCS are very subtle. Generally
speaking46 the BBOA1RCS API should be reserved for very specific cases. And then only if
you've mastered the other APIs.

Overview of Exercise 3c - BBOA1RCA

This turns out to be very similar to Exercise 3a, which used BBOA1SRV. BBOA1RCA took the
place of BBOA1SRV, a BBOA1GET was inserted just before the BBOA1RCA, and the SRV*
variables were renamed to RCA*47. The program was compiled and run.

Perform Exercise 3c

At this point you likely have the drill down well:

Copy in the supplied exercise sample

Update and compile

Submit

From the http://<host>:<port>/ATSSample1Web/ URL update the register and
service name fields and invoke with a loop value of 1. This exercise does not loop on
the COBOL side, so don't have it loop on the Java side.

With one invocation the COBOL program will return a message and then exit.

45 With BBOA1RCS the "S" means "specific" -- you must get a connection with BBOA1CNG first. That's Exercise 3e.
46 This author's opinion.
47 Not strictly required, but it helped cut down on the confusion factor.
© 2010, IBM Corporation
Americas Advanced Technical Skills - 52 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Overview of Exercise 3d - BBOA1RCA with a loop

Exercise 3d is simply 3c with the same loop architecture that Exercise 3b had.

Perform Exercise 3d

Copy, update, compile and run.

Overview of Exercise 3e and 3f - synchronous BBOA1RCS and with a loop

Exercise 3e looks very similar to 3c with the following exceptions:

• BBOA1RCA is swapped out in favor of BBOA1RCS.

• A new variable RCSasync was created and set to 0.

• Variables named RCA* were simply renamed to RCS*48

• We inserted a BBOA1CNG prior to the issuance of BBOA1RCS.

For Exercise 3f, which added the same loop function seen in 3b and 3d, except we put it inside
the BBOA1CNG / BBOACNR structure49.

Perform Exercise 3e and 3f

Copy, update, compile and run.

What about asynchronous BBOA1RCS?

To be quite honest, the author ran to the limit of his COBOL programming skills on this.

The problem was this -- calling BBOA1RCS with async=1 was easy enough. The program then
had to do "other work" while the author went over to the browser to set up the outbound call to
the BBOA1RCS hosted service. If COBOL had a built-in "delay" or "sleep" function this would
have been fairly easy. But it doesn't50. So the author -- flailing desperately J -- created several
different versions of loops that tried to delay in some fashion. But they all turned out to be
rather tight loops. By the time he was able to get back to the browser to set up the call, the
COBOL program had chewed up a bunch of CPU and spit out a lot of messages.

At the end of the day the author felt that the objectives of the Techdoc had been met. So rather
than pursue it further he wrapped up the document.

Wrap-up of the outbound exercises

We explored three more APIs -- BBOA1SRV, BBOA1RCA and BBOA1RCS. All three "host a
service" but do so with increasing degrees of granular control.

When the external address space "hosts a service" it puts the program in a state ready to
accept a connection and service invocation from Java in WAS z/OS.

Note: If going outbound to CICS, then you may not need to code to these APIs. The supplied BBO$
link server task does that. But ... if you really want to squeeze out the maximum performance
then you may want to consider coding to these APIs even if in CICS. The BBO$ link server task
is wonderfully easy, but it represents a degree of overhead your requirements may not permit.

48 Again, not strictly required, but it helped cut down on the confusion factor.
49 Since BBOA1RCS does not itself do a BBOA1CNG under the covers, we had the opportunity to secure a connection and re-

use it over and over again. BBOA1SRV and BBOA1RCA perform a CNG under the covers, and if you don't release it with
each loop you'll quickly exhaust the maximum connections, which is set on BBOA1REG.

50 CICS does, so BBOA1RCS async=1 in CICS might be easier to code to. And it's possible to code a C stub with a sleep-
type function and call that from COBOL. But at this point the author decided the merits of showing BBOA1RCS async=1
didn't justify the effort. The concept of asynchronous WOLA was illustrated earlier in the inbound call exercises. We'll
leave it at that.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 53 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Appendix - Miscellaneous Information
In this section we'll provide some supporting information with pointers to InfoCenter articles where
the full detail is provided.

Quick checklist for enabling the WAS environment for these exercises

Note: This is just for enabling the WAS server environment for these exercises. If you're using CICS then
there is additional setup within CICS. See the InfoCenter for more (search on
tdat_enableconnectorcics).

Have a server environment ready ... either ND or Standalone

Either will work for the purposes of these exercises.

Make sure at least V7.0.0.4 is applied

Version 7.0.0.4 is the maintenance level that first introduced WOLA. You must have at least that
level. Make sure that applyPTF.sh has run against the node so that 7.0.0.4 (or higher) has been
applied to the node.

Use olaInstall.sh to enable the node for WOLA

In the InfoCenter, search on tdat_enableconnector. That page spells out how to use the
olaInstall.sh shell script to enable a node to use WOLA.

Have at least load module library created with the WOLA modules copied from the HFS

One of the options of olaInstall.sh is to copy the WOLA modules from the HFS to a pre-
allocated load module library. The InfoCenter page tdat_enableconnector spells out the details.

Install the ola.rar resource adapter in the node

This is located in the /<smpe_root>/mso/OLA/installableApps/ directory for your WAS V7 product
installation. It installs like any other JCA adapter. Create a connection factory with a JNDI name of
eis/ola

Set the WAS_DAEMON_ONLY_enable_adapter cell-level environment variable

That should be scoped to the "cell" level and the value you provide it should be true.

Install the OLASample1.ear file

That should be scoped to the "cell" level and the

Provide access to CB.BIND.<prefix>.** profile for IDs wishing to access WAS server

Restart the entire environment

© 2010, IBM Corporation
Americas Advanced Technical Skills - 54 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

A picture representation of the relationships when using WOLA

Inbound to WAS from external address space (Batch or CICS)

Notes:

1. The target for the inbound call must be implemented as a stateless session bean, and it must
implement its ExecuteHome and Execute interfaces using the com.ibm.websphere.ola
package.

2. When that EJB is deployed into the server, it is given a JNDI name for the home interface of the
bean.

3. The program in the external address spaces uses the BBOA1REG API to register and it provides a
register name. That may be whatever you wish provided it is exactly 12 characters long and is blank
padded.

4. The program wishing to call the EJB uses the BBOA1INV API (or BBOA1SRQ as we illustrated earlier)
and provides the EJB's JNDI name as the servicename on the API.

Key: The BBOA1REG API establishes the linkage to the server51. The BBOA1INV names the
particular EJB to invoke by providing the JNDI name as the "service name."

Outbound from WAS to external Batch (or USS)

Notes:

1. The external program uses BBOA1REG and provides a register name.

2. The external program "hosts a service" and provides a service name.

3. The Java program uses ConnectionSpecImpl and setRegisterName() to specify the
registration pool to connect to.

4. The Java program uses InteractionSpecImpl and setServiceName() to specify the service
within the registration pool it has connected to.

Key: If the BBOA1SRV API specifies an explicit servicename, then the Java program must know
and use the service name specified52. However, if BBOA1SRV uses an asterisk for the
service name, then it will accept requests on any service on that registration.

51 Recall that the BBOA1REG API requires the cell, node and server short names. The registration is specific to the server.
52 When outbound to CICS with the BBO$ link server task in use, the service name is the CICS program name to invoke.

© 2010, IBM Corporation
Americas Advanced Technical Skills - 55 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Outbound from WAS to CICS

Notes:

1. The BBOC53 control transaction is used to start the BBO$ link server task with rgn= being the
registration name that will be used.

2. That issues the BBOA1REG API "under the covers".

3. Java program uses ConnectionSpecImpl and specifies the registration name used.

4. Java program uses InteractionSpecImpl and specifies the CICS program name to invoke.

5. The request flows through BBO$/BBO# and an EXEC CICS LINK is performed against the
program.

Key: Even though the BBO$ link server task is used, there's still a registration that takes place, and
the Java program still needs to know what that value is. The service name is simply the
CICS program name that will be issued on the EXEC CICS LINK.

53 InfoCenter, search on rdat_cics

© 2010, IBM Corporation
Americas Advanced Technical Skills - 56 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

WP101490 – The WOLA Native APIs ... a COBOL Primer

Document Change History
Check the date in the footer of the document for the version of the document.

Apr 27, 2010 Original document.

Sept 12, 2010 Updated to reference the IMS support made available in 7.0.0.12.

Dec 14, 2010 Fixed a serious problem with the WORKING STORAGE sections in the samples for the
asynchronous flags.

PIC 9(1) COMP 0. Incorrect, and caused asynch behavior problems
PIC 9(8) COMP 0. Corrected

The accompanying samples in the ZIP file have been updated as well.

Aug 13, 2013 Added a note about the use of the ATSsample1.ear application compared to
ATSSample1-new.ear. The difference is a transaction attribute of NOT_SUPPORTED in
the "new" version of that app. The README in the ZIP file suggests the "new" is for V8
but we have found it may be required for V7 as well. The symptom of the problem is
an error with a minor code of C9C2C3B.

End of WP101490

© 2010, IBM Corporation
Americas Advanced Technical Skills - 57 -

ibm.com/support/techdocs
Version Date: Tuesday, August 13, 2013

