
WBSR85 - WebSphere Application Server z/OS

 WebSphere Application Server z/OS V8.5

Hands-on Labs

Lab Version Date: October 24, 2013

© 2013, IBM Corporation 1

WBSR85 - WebSphere Application Server z/OS

Table of Contents
Unit 2 Lab - Administrative Model..3

Start a portion of your WAS z/OS runtime environment..3
Perform simple Administrative Console activities..3
Configuration File System Exploration..6
WSADMIN... 7
HPEL... 13
Output Enhancements with PM74923...19

Unit 3 Lab - Server Models..22
Multiple servants... 22
WLM "round robin" distribution.. 25
WLM classification... 26
Granular RAS.. 29
Environment cleanup... 32
Liberty Profile - first steps.. 33
Liberty Profile - z/OS Started Task.. 35
Liberty Profile - JDBC Type 2 using Angel Process...36

Unit 4 Lab - Accessing z/OS Data...38
JDBC... 38
CICS.. 54
MQ.. 60

Unit 6 Lab - WebSphere Optimized Local Adapters..64
Setup of WOLA in WAS runtime.. 64
Setup of WOLA in CICS region CICSX...66
Restart the environment and validate..67
Start Link Server Task, Register into WAS and perform basic tests..68
Inbound: CICS OLAUTIL application to WAS..71
Inbound: batch applications to WAS.. 72
Outbound: WAS to CICS using Link Server Task..76
Outbound: WAS to CICS with "alternative JNDI failover"..77

Answers, Hints and Tips...82
Brief tutorial on 3270 and MVS usage...82
System inventory answers.. 84
Configuration file system lab answers...85
WSADMIN SuperSnoop Installation Mini-Quiz Answers...85
Example of Test Connection Failure when Scope=Node..86
Using the WS-FTP client... 86

© 2013, IBM Corporation 2

WBSR85 - WebSphere Application Server z/OS

Unit 2 Lab - Administrative Model
Start a portion of your WAS z/OS runtime environment

Note: We've built the WAS z/OS runtime environment for you. The process for doing that is the same
it's been for several releases now. As you start this first lab you need to start the Deployment
Manager so you'll have access to the Administrative Console, and the Node Agent so changes
you make can be synchronized.

 Open up a 3270 session using the "WG31" icon on your desktop.

 At the system logon panel, do the following:

 Then logon with the password supplied to you by the instructors.

 If you see *** simply press host enter to clear that screen and proceed.

 Issue the command =SDSF.LOG

 Now open the command extension (single forward slash -- " / ") and then issue the long
command to start the Deployment Manager server:

S Z9DCR,JOBNAME=Z9DMGR,ENV=Z9CELL.Z9DMNODE.Z9DMGR

Notes: • See "Entering long commands" on page 82 for hints on entering this command.
• Desktop "Lab Command Strings" has file of commands for cut/paste.

The controller region will start first, then the servant will start automatically. A minute or two
after the servant starts check its output for BBOO0248I INITIALIZATION COMPLETE.

 Start the Node Agent:

S Z9ACRA,JOBNAME=Z9AGNTA,ENV=Z9CELL.Z9NODEA.Z9AGNTA

This will be a controller only. A minute or two after you start this check its output for

ADMS0003I: The configuration synchronization completed successfully.

Perform simple Administrative Console activities

Note: Some of this you may be familiar with. Consider it a "warm up" to later Admin Console work.

 Using whatever browser you prefer, go to:

http://wg31.washington.ibm.com:10005/ibm/console

 Accept any security challenges you see1.

1 Those are due to the fact the Deployment Manager's server certificate was "self-signed" (by RACF) and not by a "well
known" authority. The browser is doing its job by alerting you to this. There's no risk in this case; accept and move on.

© 2013, IBM Corporation 3

WBSR85 - WebSphere Application Server z/OS

 You should see the following logon panel:

Logon using the ID z9admin and the password as supplied by the instructors.

You should now be at the main Administrative Console panel:

 Do the following2:

2 "Command assistance" will be used when you work with WSADMIN; "Synchronize" enables synchronization each time
"save" is processed.

© 2013, IBM Corporation 4

WBSR85 - WebSphere Application Server z/OS

 You should see the following confirmation at the top of the page:

 Go under System Administration Nodes. Take inventory3 of what you see:

Node Name What type of node? (See Below) Synchonization Status?

 Deployment Manager
 Managed Node

 Green circle synchonized
 Red symbol not synchronized

 Deployment Manager
 Managed Node

 Green circle synchonized
 Red symbol not synchronized

Note: The "type" can be inferred by name ("dm" = Deployment Manager), or by looking for a
checkbox next to the node, which means it's a managed node. A checkbox implies the node can be
synchronized, and that means the node has a Node Agent, which means it's a managed node.

 Go under Servers Server Types WebSphere Application Servers. Take inventory of
what you see:

Server Name Which node does it belong to? Status?

 Deployment Manager node
 Managed Node

 Green arrow started
 Red X not started

 Click on the link representing the first server in the list and then Server Infrastructure Java
and Process Management Server instance. Take inventory:

Multiple Instances Enabled Yes No

Minimum Number of Instances 1 2 other: ________

Maximum Number of Instances 1 2 other: ________

 Go under Resources JDBC JDBC Providers. Is there anything there that suggests the
IBM DB2 JDBC driver is installed?

 Go under Resources Resource Adapters Resource adapters. Is there anything there
that suggests either the CICS JCA resource adapter or the WOLA resource adapter is
installed?

3 Answers to the "inventory" questions may be found under "System inventory answers" on page 84.

© 2013, IBM Corporation 5

WBSR85 - WebSphere Application Server z/OS

Configuration File System Exploration

Note: In this lab you'll simply do some guided exploration of the file systems and the symlink structures,
just to familiarize you with the runtime.

Using the following picture, fill in the requested information using the guided instructions that
follow4:

 Using the TeraTerm or PuTTY icon on the desktop, telnet into the wg31 system. Logon as
USER1. The instructors will provide the password.

 Change directories: cd /wasv85config, then issue ls -al to see the sub-directories. The
sub-directory is the cell long name. How many cells do you see?

 Change directories to the z9cell directory, then issue ls -al. You should see "home" and
two directories that correspond to the two nodes in the cell.

 Issue the command df | grep /wasv85config/z9cell to show the two file systems
that are mounted for the cell's two nodes. Write the values in the picture above.

 Issue the command df | grep SBBOHFS to show the file systems mounted that hold the
WAS z/OS product code. You should see several. Locate the one whose name suggests
Version 8.5 Fixpack 2. Write the mount point and file system name for the V85 FP02 product
in the picture above.

4 See "Configuration file system lab answers" on page 85 for this picture filled in with the values you should discover in
this exercise.

© 2013, IBM Corporation 6

WBSR85 - WebSphere Application Server z/OS

 Change directories to the /wasv85config/z9cell/z9dmnode directory. Issue the
command ls -al to show the sub-directories and symlinks in this directory. The symlink
named "wasInstall" is the intermediate symlink. Write that value in the picture above. Note
where it points.

 Change directories to /usr/lpp/zWebSphere/V8R5FP02, then issue the command pwd.
What does UNIX tell you is the present working directory? Does it match the mount point for
the WAS V85 product file system?

Note: The actual mount point is /shared/zWebSphere/V8R5FP02. That's a vestige of where the
z/OS system for the workshop came from, which was a Sysplex with shared file systems.
Your workshop system is a monoplex. /usr/lpp/zWebSphere is really a symlink.

 Change directories to /wasv85config/z9cell/z9nodea and repeat the previous two
steps. Note the intermediate symlink and where it points.

 Close the TeraTerm (or PuTTY) session by typing exit and then enter.

WSADMIN
 In the Admin Console go to Servers Server Types WebSphere application servers. Then

start the z9sr01a server:

Wait a minute or two until the red X becomes a green arrow.

 Open up a TeraTerm or Putty session and connect to wg31. Log on as z9admin with the
password supplied by the instructors.

 Change directories to:

/wasv85config/z9cell/z9dmnode/DeploymentManager/profiles/default/bin

 Invoke the wsadmin.sh client shell script with -help:

./wsadmin.sh -help

You should get back two or so pages of help output. Take note of what our focus will be:

© 2013, IBM Corporation 7

WBSR85 - WebSphere Application Server z/OS

 In your Admin Console, go to System Administration Deployment manager, then off to the
right locate Ports and click on that. Locate the SOAP_CONNECTOR_ADDRESS port value and
write it down here:

SOAP_CONNECTOR_ADDRESS

 Go back to your TeraTerm/PuTTY session and enter the following command as one long line5.

./wsadmin.sh -lang jython -conntype SOAP -host wg31.washington.ibm.com

-port 10002 -user z9admin -password xxxxxxx

Where xxxxxxx is the password for the z9admin userid supplied by the instructors.

The first time you run this you'll see a bunch of *sys-package-mgr* messages, then you
should see something like this:

 Issue the command print Help.help() and note the response you get, in particular help
for the four primary command objects:

5 It is broken here so it'll fit. See "Command Lab Strings" file on desktop for cut-and-paste example of this command.

© 2013, IBM Corporation 8

WBSR85 - WebSphere Application Server z/OS

 Issue the command print AdminApp.help() and note the options that exist for that
command object. In particular, look for install, uninstall and list. That's what the
script we'll provide makes use of.

 Issue the command print AdminApp.help('install') and note what comes back to
you. This is displaying the help for the install method of AdminApp:

Note: This is where things get a bit more complicated. The "options" that apply are a function of
what's in the application. Simple applications have fewer options; more complex applications
more options. What those options are and what the syntax is can be challenging. Thankfully
there's a "command assistant" function of the Admin Console to help.

 At the wsadmin> prompt, issue command exit. This will return you to the UNIX prompt.

 Earlier we had you set a console preference of "Enable command assistance notifications."
Now you'll make use of that. Go to Applications New Application New Enterprise
Application.

 Do the following:

 Then:

 Then:

© 2013, IBM Corporation 9

WBSR85 - WebSphere Application Server z/OS

 Off to the right you'll see a link titled "Command Assistance." Do the following:

Note: The point of that was to show you that with "Command Assistance" you can get a much better
sense for the syntax and layout of a WSADMIN command. The Admin Console is telling you
what it is about to use under the covers. This works for most configuration activities, not just
application installations.

 Close the Administrative Scripting Commands window.

 Open the WS-FTP client6 on the desktop, select the "wg31" profile and click "OK." Then
navigate the host side (right side) to:
/wasv85config/z9cell/z9dmnode/DeploymentManager/profiles/default/logs/dmgr

 You should see the file commandAssistanceJythonCommands_z9admin.log. Select
that file, make sure transfer mode radio button is set at "Binary" and then click on the "View"
button:

 Scroll to the bottom of the file view that appears. You should see a very long AdminApp.install
command. This is exactly the same as the console window command you saw a moment
ago. This illustrates an alternative way to get at scripting commands.

 Close the file view and exit WS-FTP.

 Cancel the application install. You'll install SuperSnoop with WSADMIN instead.

 Open a Notepad session7 -- the command you're about to issue is very long and it's best to
compose it ahead of time rather than in the TeraTerm/PuTTY window. Compose the following
command as one long line:

 ./wsadmin.sh -lang jython -conntype SOAP -host wg31.washington.ibm.com
-port 10002 -user z9admin -password xxxxxxx

-f /wasetc/was8lab/scripts/installSuperSnoop.py

Note: Where xxxxxxx is the password for the z9admin ID. This is the same invocation command
as before, but this time with the -f switch pointing to the Jython script to execute.

6 See "Using the WS-FTP client" on page 86 if you're unfamiliar with the use of this tool.
7 Or copy/paste the command from the "Lab Command Strings" file on your desktop.

© 2013, IBM Corporation 10

WBSR85 - WebSphere Application Server z/OS

 Once you have it composed to your satisfaction in Notepad, copy and paste it into the
TeraTerm or PuTTY session, which should be at the UNIX prompt. Press Enter to process
the command.

 The output is pretty chatty with various "ADMA" messages. Sift through those and find these
key messages:

Installing application SuperSnoop 1

appopts = [-appname SuperSnoop -MapModulesToServers [[SuperSnoopWeb

 SuperSnoopWeb.war,WEB-INF/web.xml

 WebSphere:cell=z9cell,node=z9nodea,server=z9sr01a]]] 2

ADMA5013I: Application SuperSnoop installed successfully. 3

Application installed and saved but not synchronized or started 4

Notes: 1 - Simple echo back of application name hard-coded in script.

2 - Part of script that echos out the constructed options list.

3 - A WSADMIN system message indicating success.

4 - Script message including important information about what was not done.

 Run the exact same command again. This time take a look at the message output starting
from right after WSADMIN begins ... you should see something like this amongst other
messages8:

Found and uninstalling SuperSnoop

ADMA5017I: Uninstallation of SuperSnoop started.

 In your Admin Console9 go to System Administration Nodes. You should see the status10 of
your node as "broken synchronization":

 Check the box next to z9nodea and click on the "Synchronize" button.

 Use the WS-FTP client on your desktop to connect to your host system and view the
/wasetc/was8lab/scripts/installSuperSnoop.py file. View this file with the
"binary" option selected. Take this mini-quiz11:

Question Your Answer

Q1 What WSADMIN command object and method is used
to uninstall SuperSnoop if it is found?

8 The script first checks if the application is there. If so, it uninstalls it.
9 You may see the message "Your workspace has been auto-refreshed from the master configuration." This is because

WSADMIN was making changes to the master configuration. The Admin Console is synching up with those changes.
10 The script does not attempt to synchronize nodes. That is possible with WSADMIN, just not used in this script.
11 See "WSADMIN SuperSnoop Installation Mini-Quiz Answers" on page 85 for the answers to this mini-quiz.

© 2013, IBM Corporation 11

WBSR85 - WebSphere Application Server z/OS

Q2 After the application has been uninstalled, what
command object and method is used to save the
changes?

Q3 How many lines in the script are used to construct the
AdminApp.install() option list?

Q4 How many option parameters are in the application
installation options list?

Q5 What's the purpose of the import sys line at the top
and the splitlines() used on AdminApp.list()?

 In the Admin Console, go to the list of applications and start your newly installed SuperSnoop
application. Wait for red X to turn to green arrow. To refresh, click little circular arrow icon.

Note: If you don't see the SuperSnoop application then log off the Admin Console and log back in.
That'll refresh the Console cache and pick up the changes made by WSADMIN.

 Invoke the application with this URL:

http://wg31.washington.ibm.com:10067/SuperSnoopWeb/SuperSnoop

You should see a very long browser page response with the top having something like this:

Note the dipslay of your server long name but your servant short name as well.

Please
Note:

Now we're going to have you invoke a much more sophisticated script. This one will create a
new server, remap the port values to fit the range conventions we use, create the virtual host
alias entries and synchronize the changes to all the nodes

This is straight from the Mike Loos' TD105447 Techdoc at ibm.com/support/techdocs.
It says V7 on that Techdoc title but the script works perfectly well unchanged with V85.

Our purpose for having you run this is to show how powerful a script may be. It also serves
as an excellent reference when you go to craft other scripts.

 Step one is to take inventory of what you have for servers in your cell right now. In the Admin
Console go to Servers Server Types WebSphere application servers. You should see
only one server there.

 Click on that server link, then off to the right click on the "Ports" link. Note the ports for the
first server ... they're in the 10060 - 10079 range. That means the next server starts at
10080.

© 2013, IBM Corporation 12

WBSR85 - WebSphere Application Server z/OS

 In a Notepad session compose this very long command as one line, just as before. (If you
still have the earlier Notepad session around modify that. Or use cut/paste file on desktop.)

 ./wsadmin.sh -lang jython -conntype SOAP -host wg31.washington.ibm.com

-port 10002 -user z9admin -password xxxxxxx

-f /wasetc/was8lab/scripts/createNewServerv85.py z9sr02a z9nodea 10080

 1 2 3 4 5

Notes: 1 - The path to the file system location where we've provided the script file

2 - The script file from the TD105447 Techdoc.

3 - First parameter passed in -- the new server long name12.

4 - Second parameter passed in -- the node long name in which the server will be created

5 - Third and last parameter passed in -- the starting port value for the range of ports

 Copy/paste that long command into your TeraTerm or PuTTY session and hit enter.

 Look for the message "All Done!" to indicate the server has been created.

 Go into the Admin Console and see that your node is already synchronized (System
Administration Nodes)

 In the Admin Console go to Servers Server Types WebSphere application servers. You
should see your new server.

 Go into the ports for the new server. You should see ports in the 10080 - 10099 range

 Go to Servers Server Types WebSphere application servers and start your new server.

Note: The new server did not require a new JCL start procedure. It used the same JCL start
procedure as the first server. It did not require any additional RACF profiles because the
RACF profiles created for the Z9 cell were sufficiently generic to allow all servers for the cell to
use the same set of profiles.

 Shut down that second server. We don't need it any more.

HPEL
 In the Admin Console, begin the process of configuring HPEL for the z9sr01a server:

12 The name conforms to the naming standards of the cell. It is one up from z9sr01a.

© 2013, IBM Corporation 13

WBSR85 - WebSphere Application Server z/OS

 Then take a look at the configurable options for logging:

 Next, take a look at the configurable options for tracing, which looks very similar to logging but
gives you an option to trace to a memory buffer first if you wish.

© 2013, IBM Corporation 14

WBSR85 - WebSphere Application Server z/OS

 Finally, take a look at the configurable options for the text log, which is a human-readable log
you can view using tools such as TeraTerm or PuTTY and tail:

Note: The text logger is not as useful for WAS z/OS because it only applies to the control region JVM
output. It defaults to on. It does represent at least some overhead. If you'd like, disable it.

 Because you've changed the logging mode to HPEL you have changes that need saving and
synchronizing:

Do that now by clicking "Save."

 To pick up the changes you need to restart your server:

© 2013, IBM Corporation 15

WBSR85 - WebSphere Application Server z/OS

 Go back to Troubleshooting Logs and trace. You should see four servers there. Click on
the z9sr01a server, which is one in which you enabled HPEL.

 Under "Related Items" at the bottom of the page, click on "View HPEL logs and trace." This
will begin to launch the Java applet log viewer in your browser window. It may take a moment
or two. When it completes you should see something like this:

 Click the "Server Instance Information" button near the top right:

From the resulting panel (and looking nowhere else) capture the following information:

os.version

systemName

java.version

jobId

Note: The purpose of this exercise was to show that with HPEL this "Server Instance Information"
button is a nice single place to get a lot of information about the server environment.

Close the information window when you're through.

 Click the "Select Columns..." button and simply note you have the ability to tailor what
columns appear.

 Now click the little "+" sign to the left of "Content and Filtering Details":

© 2013, IBM Corporation 16

WBSR85 - WebSphere Application Server z/OS

 Then:

 Click on the "Last Page" button ... you should see the "Open for e-business" message:

 Go back to the "Content and Filtering Details" section at the top of the page and set the
minimum level to WARNING and the maximum level to FATAL and click "Apply"

How many records do you know see? What type are they -- warning, severe or fatal?

 Set the minimum and maximum back to blank ... click "Apply."

© 2013, IBM Corporation 17

WBSR85 - WebSphere Application Server z/OS

 Set the filtering to filter on the message contents for the string *SuperSnoop* :

Then click "Apply." At first you won't see any messages.

 From your browser, drive the SuperSnoop application:

http://wg31.washington.ibm.com:10067/SuperSnoopWeb/SuperSnoop

 Refreshing the display in the log viewer with the "Refresh View" button:

 You should now see what the SuperSnoop application writes out to System Out:

 Go back to the browser and drive SuperSnoop several times. You should see the "You've
visited this page" counter near the top of the page increment each time. Go back to the log
viewer and "Refresh View." You should see more records:

 Now you'll switch to using the logViewer.sh shell script. Open TeraTerm/PuTTY, log in with
the z9admin ID and change directories to the z9cell's
/AppServer/profiles/default/bin directory.

 Enter the following command: ./logViewer.sh -listInstances

 Copy the long instance value, which is the servant region instance. It'll look something like
this:

1319235052657/0000012000000002-Z9SR01AS_STC00119

Paste that for safekeeping in a Notepad session, or update the "Lab Command Strings" file
on the desktop.

 Issue the following command to create a human readable log file that contains every record in
the binary HPEL log:

./logViewer.sh -instance <instance_string> -outLog /tmp/HPEL_full.out

 When that completes, use the WS-FTP client to "view" the file on the mainframe. It's in
EBCDIC, so select the "ASCII" option so it views in human readable form.

Note: A file that may be downloaded or viewed on the mainframe using standard tools UNIX tools.
The format of this file should be very recognizable to distributed WAS administrators.

© 2013, IBM Corporation 18

WBSR85 - WebSphere Application Server z/OS

 Now compose in Notepad the following command as one line and paste it into the
TeraTerm/PuTTY session and execute:

./logViewer.sh -instance <instance_string>

 -includeLoggers SystemOut -outLog /tmp/HPEL_filter.out

 From a TeraTerm or PuTTY session, issue command cat /tmp/HPEL_filter.out

You should see the SYSTEMOUT records for the SuperSnoop invocations you did earlier.

 For the final lab exercise issue the following command:

./logViewer.sh -instance <instance_string>

 -includeLoggers SystemOut -monitor 2

Note: Rather than write to a file this will put output to the Telnet console. And the -monitor 2
parameter tells it to check every two seconds and output any new records that meet any
filtering criteria.

When you execute that command it'll at first look like nothing is happening. But when you
invoke SuperSnoop again you'll see those output lines come out.

 From your browser drive SuperSnoop again several more times. Go back to the TeraTerm or
PuTTY session and you should see the new lines displayed. Drive SuperSnoop again and
see those lines displayed.

Note: This provides a way to monitor the activity of a server based on fairly granular filtering criteria.

 Issue a Ctrl-C command in the TeraTerm/PuTTY session to quit the -monitor processing.

 Close the TeraTerm or PuTTY session by issuing exit command.

 Turn off HPEL and reconfigure logging back to use JES spool:

 Save and synchronize the changes

 Restart the server.

Output Enhancements with PM74923
 Logon to the AdminConsole and go to Environment WebSphere variables.

 Set the scope to Cell=z9cell.

 Add a new variable with Name = DAEMON_redirect_server_output_dir and Value =
/wasv85config/wasoutput/z9cell/z9cell

 Add another new variable with Name = redirect_server_output_dir and Value =
/wasv85config/wasoutput/z9cell/z9cell

 Save and synchronize the changes.

© 2013, IBM Corporation 19

WBSR85 - WebSphere Application Server z/OS

 Restart the Cell (in z/OS =ISPF.LOG, stop the Daemon with /P Z9DEMN, wait for everything
to complete, then start the deployment manager, nodeagent, and server).

Note: We have chosen to put all of the output components into the cell level directory, for
demonstration purposes in this lab.

 Logon to TSO and go to option =3.17 to view the ouput.

 Provide the path to the output: /wasv85config/wasoutput/z9cell/z9cell.

and then press the enter key. You should then see something like the following:

You can browse any of those output files by placing the letter b in the command field and
pressing enter.

 An alternative way to view the output is with a browser and an HTTP server. To try this, go to
=SDSF.LOG and enter the start command for the HTTP server: /S Z9HTTP01

 Open a browser session and enter the following URL:

http://wg31.washington.ibm.com:9080

 You will be prompted for a userid and password. Use ID USER1.

 Navigate through to the z9cell directory where the output files are stored. You may then
click on any one of them to view the output.

 To demonstrate the ability to switch to new output files for a server, enter the command in
=SDSF.LOG to roll the logs for the z9sr01a server:

/F Z9SR01A,ROLL_LOGS

© 2013, IBM Corporation 20

WBSR85 - WebSphere Application Server z/OS

 Hit the browser “refresh" button. Note the new output files for the server:

Note: If you examine the “old" and “new" output files, you should see the backward and forward
pointing “links" in them. The last message in the “old" file should point to the location of the
“new" file and the first message in the “new" file should point to the location of the “old" file.

 Logon to the AdminConsole and go to Environment WebSphere variables.

 Set the scope to Cell=z9cell.

 Delete the two variables we added at the beginning of this exercise that have the names
Daemon_redirect_server_output_dir and redirect_server_output_dir

 Save and synchronize the changes.

 Shut down the HTTP Server in an SDSF with the following command:

S Z9HTTP01,action='stop'

Important: Be careful that you do this in the extended command area (type a single forward slash
and hit enter). Otherwise, the stop command will be uppercased and will not work. The
only part of the command where case is important is between the two apostrophes.

 Restart the Cell (stop the Daemon, wait for everything to complete, then start the deployment
manager, nodeagent, and server).

 End of Unit 2 Lab

© 2013, IBM Corporation 21

WBSR85 - WebSphere Application Server z/OS

Unit 3 Lab - Server Models
Multiple servants

Note: In this section you will explore the two means of achieving multiple servants: by way of the
Administrative Console and use of the MVS MODIFY command.

 Important! Check and make sure you've set HPEL off (page 19), the PM74923 function is off
(page 21), and the HTTP server is shut down (page 21).

 In your 3270 session, go to =SDSF.LOG and issue the following command:

/F Z9SR01A,WLM_MIN_MAX=2,2

You should see an error message13:
BBOO0342E MODIFY COMMAND WLM_MIN_MAX=2,2 FAILED: WLM DAE CONFIGURED
SINGLE SERVER

 Let's fix that. In the Admin Console, navigate to the following location and do as indicated14:

 Save and synchronize all changes made up to this point.

 Restart your server to pick up all these changes.

 Check in the controller held output for the following messages:

wlm_maximumSRCount: 2.
wlm_minimumSRCount: 1.

 You should at this point have only one servant active. That's because of the minimum servant
count of 1. Verify this by going to =SDSF.DA in the 3270 screen and issuing command
PREFIX Z9*

If the names seem out of order, issue SORT JOBNAME to make the controller and servant
appear in order

13 That's because by default servers are configured with "multiple instances" disabled. You'll change that next.
14 This tells WLM to enable "multiple instances" and to start with 1 and allow up to 2.

© 2013, IBM Corporation 22

WBSR85 - WebSphere Application Server z/OS

 Now open a TeraTerm or PuTTY session to your z/OS system and log on as USER1 (not
Z9ADMIN)15

 Change directories to /wasetc/was8lab/other

 Issue the command ./runjmeter ... which starts JMeter16 on the mainframe. In a moment
you should see:

Waiting for possible shutdown message on port 4445

 Then go to =SDSF.DA, hitting "enter" periodically to refresh the screen. In about ten seconds
or so you should see your second servant come up:

Verify that you see "SuperSnoop running" messages in both servant region's SYSPRINT17.

 Go back to your TeraTerm or PuTTY session and issue Ctlr+C to issue an interrupt and stop
the running JMeter process.

The second servant will stay up. WLM can dynamically close that servant, but in general WLM will not
close down servants quickly, particularly if nothing else on the system is competing for resources.

 In the Admin Console, go to the list of application servers and restart z9sr01a. It should
come back up with one servant region, but be defined with MIN=1 and MAX=2.

 For the next test section we want to show work being balanced across multiple servant
regions. For that we'll need two active.

You may manually increase the number of servant regions using the MVS MODIFY command.
You will now see how that is done. In z/OS issue the command:

/F Z9SR01A,WLM_MIN_MAX=2,2

 Give it a moment and then you should see the second servant region come up:

 On your desktop you should see an icon labled "JMeter." This is the GUI version of the tool.
Double-click on that icon to launch the tool. If challenged ... click "Run" to authorize its
execution. You should then see:

15 You'll get a funny FSUM error if you use Z9ADMIN. This is due to UNIX permissions. USER1 has authority.
16 JMeter is an open-source workload simulator test tool. We have that configured to drive 50 simulated users into your

server. You may download a copy of the JMeter tool free of charge from:
http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi

17 Or System Out if HPEL.

© 2013, IBM Corporation 23

WBSR85 - WebSphere Application Server z/OS

 In JMeter, go to File Open and select the WBSR8.jmx file that should appear in the
selection list and click "Open". You should then see something like this:

 Click on "SuperSnoop Thread Group" and note that it starts with only 1 simulated user defined
and loops forever.

 Now click on "SuperSnoop" and note how the tool defines the host, port, the context root and
servlet mapping as well as the HTTP method:

 Look at the "MyIVT Thread Group" as well as "PolicyIVP Thread Group" and you'll see both
start with 0 thread users. Initially JMeter will drive only the SuperSnoop application.

 To run this, select the test plan name ("WBSR8 Test Plan"), then Run Start. Then look to
the right and make sure you see a little green box with the number of active threads indicated:

 Look in both servant region's held output and you'll see that SuperSnoop is only seen running
in one. WLM by default will favor one servant even if multiple are present, provided that one
servant can do the work. With only one simulated users it can handle the work.

© 2013, IBM Corporation 24

WBSR85 - WebSphere Application Server z/OS

 In JMeter go to Run Stop. Look to make certain the active threads goes to 0.

 Change the SuperSnoop thread group threads to 10 and try again. You'll very likely still see
messages in one servant but not the other.

 Stop the test run. Increase the number of JMeter thread users to 25 and restart. Look in the
second servant ... do you see "SuperSnoop" running? If not, increase the threads to 50.
Increase until the messages in the second are steady. How many threads did it take?

 Stop the test plan in JMeter.

 In the Admin Console, stop (but do not restart) the z9sr01a server again. This will provide a
clean SYSPRINT for the next lab step.

Lesson While we might think WLM would "round robin" between available servants, that's
not really true. By default it will favor the first until it has reason to place work in the
second. Increasing the threads in JMeter was a means of placing enough work in
the server for WLM to take action.

WLM "round robin" distribution

Note: What if you want WLM to "round robin" work between available servants? There's an
environment variable that will do something close to "round robin," but not exactly18.

 Create an environment variable. Go to Environment WebSphere Variables.

 Set the scope to your "z9sr01a" server:

 Click on the "New" button and provide the following variable:

Name: wlm_stateful_session_placement_on

Value: true

 Click on the "OK" button, then save and synchronize.

 In the Admin Console go in and configure the servant regions to MIN=2 and MAX=2. See
page 22 for a refresher of where that panel is located.

 When complete, save and synchronize the changes and then start your server.

 In the controller region held output look for this message19:

BBOM0001I wlm_stateful_session_placement_on: 1.

 Insure you have two servants started.

 In JMeter, set the SuperSnoop Thread Group user count back to a value of 2.

 Start the test case (select, Run Start).

18 Full details are in the WP101740 Techdoc at ibm.com/support/techdocs. In a nutshell, the environment variable
we are about to explore will attempt to balance affinities across available servants. The SuperSnoop application
establishes a servant affinity because it creates an HTTP session object.

19 We have you check for these messages to insure the variable has taken effect. One small typo could invalidate it.

© 2013, IBM Corporation 25

WBSR85 - WebSphere Application Server z/OS

 Look in the held output for each servant region for the "SuperSnoop running" messages.
Recall that earlier we saw with two users the work all went to one servant. Here you should
see a kind of "balance" between the servants.

 After a minute or two stop the JMeter test case.

 Delete the wlm_stateful_session_placement_on environment variable. Save and
synchronize.

 Stop the server but do not restart it. We have a few other changes to make before restarting.

WLM classification

Note: In this section you will use the XML classification file to achieve separate WLM classification for
two applications. You will see how this results in the placement of each application work into its
own servant region.

 We'll install a second application so we can easily tell that work for one is placed in a servant
and work for the other is placed in the other servant. Go to Applications New Application
 New Enterprise Application. Then:

 On the next panel take the defaults and click "Next"

 The next panel you see begins the application installation:

However, you will take all the defaults so click on "Step 3 Summary"

 Click on the "Finish" button.

© 2013, IBM Corporation 26

WBSR85 - WebSphere Application Server z/OS

 Then click on the "Save" link:

 When synchronization completes, then go to Applications Application types WebSphere
Enterprise Applications. You should see My_IVT_Application in the list along with
SuperSnoop.

 Using the WS-FTP client, view the following file that's stored in the host file system:

/wasetc/was8lab/other/classification.xml

That file is stored in ASCII so in WS-FTP you must select the "Binary" option when viewing.
Here's a roadmap to what's in that file:

 Take a look at this picture. It's a bitmap clip20 from your system's WLM CB classification rules
we set up before the class. Just review the picture; don't worry about going into WLM:

1 The four transaction classes specified in the classification file.

20 We're providing a bitmap rather than driving you into WLM. For those unfamiliar with WLM it can be a daunting place.

© 2013, IBM Corporation 27

WBSR85 - WebSphere Application Server z/OS

2 The mapping of transaction class to service class.

3 Note that both Z9TRANB and Z9INT get mapped to the same Service Class (Z9CLASSB), but
different reporting classes. This means for reporting and analysis you can separate out the
internal work from your real work even though the same service class is in use.

4 The Z9DEFLT transaction class gets mapped to CBCLASS, which is the same Service Class as
defaults when just the CN name of Z9* is used.

 Now take a look at what the service class goals we set up ahead of time:

Both are response time goals. Z9CLASSB (MyIVT) will have a slightly higher priority.

 The thing that allows the controller to identify inbound work and assign a TC is the
classification XML file. The next step is to tell the Z9SR01A server about the classification file
so it may load it. This is done with an environment variable.

Create the following environment variable at the server scope, just like the other environment
variables you created:

Name: wlm_classification_file

Value: /wasetc/was8lab/other/classification.xml

Save and synchronize.

 Start the server.

 When the server comes up, check in the controller region's held output for either success or
failure21 loading the classification file.

Success:
BBOJ0129I: The /wasetc/was8lab/other/classification.xml
workload classification file was loaded ...

Problem:
BBOJ0085E: PROBLEMS ENCOUNTERED PARSING WLM CLASSIFICATION
XML FILE ...

 One final verification of this before we start driving work. Issue the following MODIFY
command:

/F Z9SR01A,DISPLAY,WORK,CLINFO

You should see a response that looks something like this:
BBOJ0129I: The /wasetc/was8lab/other/classification.xml workload
classification file was loaded at 2011/10/23 13:15:14.861 (EDT)
BBOO0281I CLASSIFICATION COUNTERS FOR HTTP WORK
BBOO0282I CHECKED 0, MATCHED 0, USED 0, COST 3, DESC: HTTP root
BBOO0282I CHECKED 0, MATCHED 0, USED 0, COST 2, DESC: Snoop
BBOO0282I CHECKED 0, MATCHED 0, USED 0, COST 3, DESC: MyIVT
BBOO0283I FOR HTTP WORK: TOTAL CLASSIFIED 0, WEIGHTED TOTAL COST 0
BBOO0281I CLASSIFICATION COUNTERS FOR INTERNAL WORK
BBOO0282I CHECKED 368, MATCHED 368, USED 368, COST 1, DESC: Internal root
BBOO0283I FOR INTERNAL WORK: TOTAL CLASSIFIED 162, WEIGHTED TOTAL COST 162
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,CLINFO

21 Common problems include (a) file not found; (b) file permissions do not allow read; (c) file stored in EBCDIC, not
ASCII; or some XML structure problem in an otherwise accessible file.

© 2013, IBM Corporation 28

WBSR85 - WebSphere Application Server z/OS

Note: For now this validates that WAS z/OS recognizes the HTTP element in the XML and the two
classification rules Snoop and MyIVT as well as internal. Later it can be used to validate how
the classification rules are being evaluated and met.

 Now, back in JMeter, set the SuperSnoop thread group user count to 2 and the MyIVT thread
group user count to 2 as well. Start the test case.

 Check the held output for each servant. You should see SuperSnoop running in one and
MyIVT in the other.

SuperSnoop SuperSnoop running

MyIVT
ivtServlet ### -- in method service and about to write HTML
ivtServlet ### -- finished writing HTML

You should not see intermixing of the two.

 After a period of activity, issue F Z9SR01A,DISPLAY,WORK,CLINFO again. You should see
a lot more numbers for "checked," "matched" and "used." Can you determine if each request
is evaluated against the XML from top to bottom? If so, then does it make sense to sequence
the highest volume classification rules higher?22 That's what the "cost" factor is getting at.

 In your TSO session, go to =SDSF.ENC to display active WLM enclaves, which will be in
bright white type. If you don't see any, press the "enter" key to refresh a few times. The
enclaves come and go quickly. You may see something like this:

You won't likely see the MyIVT enclave ... that application executes very quickly. SuperSnoop
does a bit more work and thus we're able to see the enclaves active.

 Now issue =RMF to go the Report Monitoring Facility. Then enter 3 for "3 Monitor III." Then S
for "Sysplex." And finally 1 for "SYSSUM." You should see something like this:

 ------- Goals versus Actuals -------- Trans
 Exec Vel --- Response Time --- Perf Ended
Name T I Goal Act ---Goal--- --Actual-- Indx Rate

ONL_WKL W 100 18.91
CBCLASS S 2 75 0.0 N/A 0.020
Z9CLASSA S 1 100 1.000 90% 99% 0.60 3.620
Z9CLASSB S 1 0.0 0.500 95% 100% 0.50 15.27

In this example 99% of the Z9CLASSA work is seeing better than 1 second response time.
And 100% of the Z9CLASSB work is seeing better than 0.5 second response time.

What you see may be different. These numbers change all the time.

 Exit from RMF

 Stop the JMeter test case that's running.

Granular RAS

Note: In WAS z/OS V8 they took advantage of this XML classification file to provide certain controls
down to those requests that match in the file. In this lab we'll illutrate two: message_tag and
classification_only_trace.

22 Yes, and yes.

© 2013, IBM Corporation 29

WBSR85 - WebSphere Application Server z/OS

 Using the WS-FTP client on your desktop23, download the classification.xml file in
binary to your workstation.

 Rename the file on your workstation to something like classification2.xml

Why? We're about to show you how to dynamically load a different classification file into WAS.

 Edit it and add the following:

Note: This will append the custom message tag to all log and trace records associated with requests
that match.

 Upload that back to the mainframe in binary.

 On the right side of the WS-FTP client, select the new file and right-mouse click. Select the
option chmod(UNIX) and then:

 You'll use the MODIFY command to dynamically load the new classification file. From
=SDSF.LOG enter a single forward slash (/) to open the command extension, then enter:

F Z9SR01A,RECLASSIFY,

FILE='/wasetc/was8lab/other/classification2.xml'
No spaces in that. Case matters for the path and file name so type carefully.

 It will respond with a message indicating either success or failure. If failures, then look in the
controller region output for some hint of what error was encountered. Correct and re-issue
the command until you get success.

 Go back to JMeter. Start the test case, let it run for 10 seconds or so, then stop it.

23 See "Using the WS-FTP client" on page 86 for guidance on usage.

© 2013, IBM Corporation 30

WBSR85 - WebSphere Application Server z/OS

 Just like before, you should see SuperSnoop going to one servant and MyIVT going to
another. But you'll now see something like this:

(tag=WBSR8) SuperSnoop running

 On the workstation create a copy of the XML file. Call it classification3.xml. Edit that
file and make the following changes:

Note: This will provide detailed tracing for only those requests to match.

 Upload that file in binary format to the /wasetc/was8lab/other directory.

 After upload, chmod the file like you did on the previous page.

 Issue the following command as one line from =SDSF.LOG

F Z9SR01A,RECLASSIFY,

FILE='/wasetc/was8lab/other/classification3.xml'
Make sure it loaded successfully. If errors, check the contoller region for a hint. Fix the error,
re-upload and reclassify.

 In the Admin Console go to Troubleshooting Logs and trace. Select the z9sr01a server.

 Click on "Change log detail levels", then click on the "Runtime" tab:

© 2013, IBM Corporation 31

WBSR85 - WebSphere Application Server z/OS

 Then do the following:

 Go back to JMeter. Start the test case, let it run for 10 seconds or so, then stop it.

 If you look in the servant region for SuperSnoop you'll still see the message tags:

(tag=WBSR8) SuperSnoop running
(tag=WBSR8) SuperSnoop running
(tag=WBSR8) SuperSnoop running

Notice there's no trace records ... it's all the SuperSnoop messages. No tracing records.
Prior to V8 the update to the tracing level would have applied to everything in the server. Now
it can be made to apply to only specified requests.

But if you go to the other servant region you'll see:

Environment cleanup
 Stop the JMeter test run Important

 Close JMeter.

 Go to Troubleshooting Logs and trace. Select the z9sr01a server. Set the trace level
back to just *=info (in other words, remove the more detailed tracing set earlier).

© 2013, IBM Corporation 32

WBSR85 - WebSphere Application Server z/OS

 Set the servant MIN, MAX back to default:

See page 22 for a reminder of where this is located.

 Save and synchronize the changes.

 Stop the z9sr01a server.

Liberty Profile - first steps
 Open a TeraTerm or PuTTY session to your system. Log on as USER1.

 Issue the command pwd ... you should see you're in the /u/user1 directory

 Issue the command mkdir liberty to create that directory under /u/user1

 Issue the command export WLP_USER_DIR=/u/user1/liberty ... this creates and
exports that value to the UNIX shell environment.

 Validate that: echo $WLP_USER_DIR ... you should see the proper value echoed back

 Issue export JAVA_HOME=/shared/zWebSphere/V8R5FP02/java64 ... this provides
the UNIX shell environment with a pointer to a valid 64-bit Java installation24.

 Validate that as well: echo $JAVA_HOME

 Change directories to /shared/zWebSphere/V8R5FP02/wlp/bin ... that is the read-only
installation location for WAS V8.5. The /wlp directory is where Liberty was installed.

 Issue the command server create server1 ... this will create a basic server
configuration in the WLP_USER_DIR location, which you set earlier.

 Issue the command server start server1 ... this will start the server. You should see a
response something like this:
Server server1 started with process ID 67108958.

 Issue the command server status server1 ... that should echo back the same message
you just saw when you started the server.

 Using ISHELL, navigate to the /u/user1/liberty/servers/server1/logs directory.
Place an E next to the messages.log file and press Enter.25 Scroll to the right (F11) and you
should see something like this:
The server server1 has been launched.
The angel process is not available. No authorized services will be loaded.
Authorized service group SAFCRED is not available.
Authorized service group TXRRS is not available.
Authorized service group ZOSDUMP is not available.
Authorized service group ZOSWLM is not available.
IBM product WAS FOR Z/OS version 8.5 successfully registered with z/OS.
Feature update started.

24 In this case it is the Java that's provided with WAS z/OS Version 8.5.
25 The file is actually stored in ASCII on the mainframe, but it's tagged so tools like OEDIT may auto-convert it.

© 2013, IBM Corporation 33

WBSR85 - WebSphere Application Server z/OS

The kernel started after 2.021
TCP Channel defaultHttpEndpoint has been started and is now listening
 for requests on host LOCALHOST (IPv4: 127.0.0.1) port 9080.
Monitoring dropins for applications.
Monitoring dropins for applications.
Feature update completed in 0.56 seconds.

The server server1 is ready to run a smarter planet.

 Using ISHELL, navigate to the /u/user1/liberty/servers/server1 directory and edit
the server.xml file. Change the host= value to an asterisk (*) and save the file:

 Go back and edit the messages.log file and you'll see Liberty dynamically detected the
change and started listening on all hosts, not just "localhost":
TCP Channel defaultHttpEndpoint has stopped listening for requests on host LOCALHOST
(IPv4: 127.0.0.1) port 9080.
TCP Channel defaultHttpEndpoint has been started and is now listening for requests
on host * (IPv4) port 9080.

 There is a directory /u/user1/liberty/servers/server1/dropins that was created
when the server was first started. By default Liberty is monitoring this directory for application
updates. Copy a servlet application in with this command entered as one line in the TeraTerm
or PuTTY session:
cp /wasetc/was8lab/applications/ATS_servlet.war

/u/user1/liberty/servers/server1/dropins/ATS_servlet.war

 Go back to the messages.log file and notice that Liberty detected the new application and
started it:
CWWKZ0018I: Starting application ATS_servlet.
SRVE0169I: Loading Web Module: ATS_servlet.
SRVE0250I: Web Module ATS_servlet has been bound to default_host.
CWWKT0016I: Web application available (default_host):

 http://WG31.WASHINGTON.IBM.COM:9080/ATS_servlet/*
SRVE9998I: Application ATS_servlet added to web container.
CWWKZ0001I: Application ATS_servlet started in 0.83 seconds.

 Point your browser at this URL to invoke the application:
http://wg31.washington.ibm.com:9080/ATS_servlet/SimpleServlet
You should see something like this:

© 2013, IBM Corporation 34

WBSR85 - WebSphere Application Server z/OS

 From the /shared/zWebSphere/V8R5FP02/wlp/bin directory, issue the command:
server stop server1

You should see a message indicating the server has been stopped.

Note: That's the basics -- simple to set up, dynamic, fast. Server startup is measured in seconds. But
the application was also very simple -- a servlet with no data access.

Next you'll start the server as a z/OS Started Task, then you'll use JDBC T2 with RRS.

Liberty Profile - z/OS Started Task
 Look in the /shared/zWebSphere/V8R5FP02/wlp/templates/zos/procs directory.

You'll see two files -- BBGZANGL and BBGZSRV. Those are the sample JCL start procs.
Those have been copied to SYS1.PROCLIB prior to the workshop.

 Edit the SYS1.PROCLIB(BBGZSRV) member and make the following two updates:
000010 //* WLP_USER_DIR environment variable in the Unix shell.
000011 //*--
000012 // SET INSTDIR='/shared/zWebSphere/V8R5FP02/wlp'
000013 // SET USERDIR='/u/user1/liberty'
000014 //*--
000015 //* Start the Liberty server
Be sure to enclose with single quotes, and make certain the case is correct.

 Before you can start that proc a RACF STARTED profile is needed to assign identity to the
started task. The job USER1.WAS.CNTL(LIBRACF1) has been created for that purpose.
Submit that job and inspect the output to make sure the STARTED profiles were created.

 Create the file26 /u/user1/liberty/servers/server1/server.env with permission
755 and populate it with one line:
JAVA_HOME=/shared/zWebSphere/V8R5FP02/java64
Save the file.

 Go to =SDSF.DA and set the prefix to PRE BBG*

 Open the z/OS command extension27 (single forward slash) and start the server with the
following command:
S BBGZSRV,PARMS='server1'

Note: If you wished you could add JOBNAME= to that.

26 Either ASCII or EBCDIC ... Liberty will work with either.
27 Your server is lower-case server1. The PARMS= field must have that in lowercase to match what's in the file system.

Mixed-case commands are supported in the command extension. That's why we have you use the extension for this.

© 2013, IBM Corporation 35

WBSR85 - WebSphere Application Server z/OS

 You should see the server start up. Check the output for the job ... you should see messages
indicating the application has started and the server is ready.

 Point your browser at:
http://wg31.washington.ibm.com:9080/ATS_servlet/SimpleServlet

You should see the same result you saw before.

 Stop the server:
/P BBGZSRV

Liberty Profile - JDBC Type 2 using Angel Process

Note: In this section you'll use JDBC Type 2 to access DB2. JDBC T2 implies RRS, and that implies
use of a z/OS authorized service. Which means you'll need the Angel process.

 Start DB2 by issuing the following command from =SDSF.LOG
/-DSNX START DB2

Give it a few moments to come up. Look for this message as a sign of success:
DSN9022I -DSNX DSNYASCP 'START DB2' NORMAL COMPLETION

 The job USER1.WAS.CNTL(LIBRACF2) creates a set of SERVER profiles that provides
access to z/OS authorized services28. Submit the job and insure the profiles are created.

 Edit the SYS1.PROCLIB(BBGZANGL) proc and make one update:
000001 //BBGZANGL PROC PARMS='',COLD=N
000002 //*---
000003 // SET ROOT='/shared/zWebSphere/V8R5FP02/wlp'
000004 //*---
000005 //* Start the Liberty angel process
000006 //*---

 Start the angel process with the following command:
/S BBGZANGL
In the job output you should see:
CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL

 To use JDBC T2 you'll need a few server.xml updates. Rather than having you type all
that we supplied the file. Issue the following command (on one line) to copy the file:
cp /wasetc/was8lab/other/server.xml

/u/user1/liberty/servers/server1/server.xml

 Take a look at the new server.xml file and note the JDBC artifacts29. Try to see how the
XML really just points to the DB2 JDBC libraries and provides a data source value for the
application to use.

 Your z/OS system has two DB2 subsystems installed, so it's necessary to let Liberty Profile
know which subsystem you wish it to connect to. To keep this simple we created the files
ahead of time, and all you need to do here is perform a simple copy:
cp /wasetc/was8lab/other/jvm.options

/u/user1/liberty/servers/server1/jvm.options

Note: The jvm.options file contains a pointer to another file. That other file contains the
subsystem ID to connect to. If you're curious, take a look in the just-copied jvm.options file
and follow the pointer to see how the SSID is specified.

28 Six RDEFINE statements are present but only three are needed for this exercise (the first two and TXRRS). The others
are present for completeness -- they represent the other three authorized services supported by Liberty z/OS.

29 Information on server.xml elements and syntax may be found in InfoCenter, search on rwlp_metatype_4ic

© 2013, IBM Corporation 36

WBSR85 - WebSphere Application Server z/OS

 From the command extension start the server again:

S BBGZSRV,PARMS='server1'

 Look at the /u/user1/liberty/servers/server1/logs/messages.log file. You
should see the following:
Authorized service group SAFCRED is available.
Authorized service group TXRRS is available.
Authorized service group ZOSDUMP is available.
Authorized service group ZOSWLM is available.
That indicates the Angel process is present and the RACF SERVER updates are in place to
allow the user (USER1 in this case) to access the authorized services.

 In that same messages.log file you should also see messages indicating the JDBC Type 2
driver is available.

 Now drop the JDBC application into the /dropins directory with this copy command:
cp /wasetc/was8lab/applications/ATS_jdbc.war

/u/user1/liberty/servers/server1/dropins/ATS_jdbc.war

 If you refresh your view of the messages.log file you should see that the JDBC application
has been started.

 Point your browser at:
http://wg31.washington.ibm.com:9080/ATS_jdbc/sample.html
You should see a page that looks like this:

 Click the first link "Insert" to insert 10 rows into the database table. It will echo back to your
browser screen the records inserted.

 Use the browser "back" button to return to the initial application screen

 Click "Insert" again ... you should now see 20 rows in the table.

 Go back and click on the "Delete" link (last one) ... this should delete all the rows.

 Click on "Select" ... you should see no rows displayed since "Delete" removed them all.

 Stop the Liberty server: /P BBGZSRV

 Stop the Angel process: /P BBGZANGL

 End of Unit 3 Lab

© 2013, IBM Corporation 37

WBSR85 - WebSphere Application Server z/OS

Unit 4 Lab - Accessing z/OS Data
JDBC

Note: This section will demonstrate three things: (1) manual failover and failback using the MODIFY
command; (2) automatic failover upon detection of loss of DB2 with failback upon recovery; and
(3) demonstration of some additional functions that are WAS z/OS-exclusive.

 In TSO =SDSF.LOG, check to see if DB2 is up with command /D A,L. You should see four
address spaces that start with "DSNX". If not up, start with /-DSNX START DB2.

 In the Admin Console, go to Resources JDBC JDBC providers.

 Set the "Scope" pulldown to that of the z9sr01a server:

Normally JDBC provider resources are scoped at the "Node" level. But scoping at the server level will
allow the "Test Connection" button to work30. That's the only reason we're scoping to the server. There
is no technical reason to scope it to the server for the functions we're about to demonstrate.

 Click the "New" button, then do the following:

30 If scoped to the "node", WAS attempts to issue the Test Connection request from the Node Agent. That is a server with no
servant region. So the Test Connection fails.

© 2013, IBM Corporation 38

WBSR85 - WebSphere Application Server z/OS

 Then:

 At the summary panel, click "Finish":

 You should see your new JDBC provider definition. Click on that link and do the following:

© 2013, IBM Corporation 39

WBSR85 - WebSphere Application Server z/OS

 Then:

 And then:

 And at the summary panel, just click "Finish"

 Save and synchronize your changes:

 Go to Resources JDBC JDBC providers ... you should now see your new provider:

 Click on that provider link, then click on "Data Sources," then click on the type2ds data
source link, then under "Additional Properties" click on "Custom Properties."

© 2013, IBM Corporation 40

WBSR85 - WebSphere Application Server z/OS

 Click the "New" button and add a custom property31 with a name of ssid and a value of
DSNX, then click "OK":

 Save and synchronize the changes.

 Now create a second provider and a second data source32 using following few pictures to
guide you. Click the "New" button, then set the provider information:

 The classpath and libpath information is the same as the first provider:

31 This tells WAS what DB2 subsystem ID to connect to with the Type 2 connection.
32 The panels will be identical; only the information entered will be different.

© 2013, IBM Corporation 41

WBSR85 - WebSphere Application Server z/OS

 Click through and finish. When you see your new provider listed, click on the link and create
a new data source. Provide a unique name and JNDI name:

 Then set the specifics for the Type 4 connection to DB2:

Note: In this case our backup data source is pointing to the same DB2 subsystem on the same
LPAR as the primary. In a real-world setting the Type 4 would more likely point to DB2 on
another LPAR. This is a workshop lab environment ... imagine it's another LPAR. J

 When you get to the security aliases panel, leave all the pulldowns blank for now. Just click
"Next" and then click "Finish".

 You should see your new data source in the list. Click on that data source link.

 Next, click on the "JAAS - J2C authentication data" link:

 Click the "New" button, then fill in the information for the authentication alias and click "OK":

 You'll see your new alias in a list. Look to the top of that page and find the navigation path
and click on "type4ds":

© 2013, IBM Corporation 42

WBSR85 - WebSphere Application Server z/OS

 On the resulting panel, scroll down until you see "Security settings" and use the drop-down
lists to populate the fields as shown:

Then click "OK".

 Save and synchronize all the changes.

 Go to Resources JDBC JDBC providers ... you should now see both of your providers:

 Go to Resources JDBC Data sources ... you should now see both of your data sources
as well as a few others:

© 2013, IBM Corporation 43

WBSR85 - WebSphere Application Server z/OS

 Click on the type2ds data source link, then do the following:

Note: A new property in V8. This tells WAS what JDBC data source to use (jdbc/type4ds) in the
event the primary one (type2ds in this case) fails. We are illustrating local Type 2 as the
primary with a alternate of a Type 4 connection across TCP.

 Save and synchronize the changes.

 Start the z9sr01a server. Give that a few moments to start.

 When it comes active, go to Resources JDBC Data sources ...then select the type2ds
checkbox and click the "Test connection" button33. You should see:

 Repeat with the type4ds. You should see the same result. You're now ready to proceed to
the manual failover and failback testing.

Install PolicyIVP JDBC application

 In the Admin Console, go to Applications New Application New Enterprise Application.

 Click on the "Remote file system" radio button, then type in:

/wasetc/was8lab/applications/PolicyIVPV5.ear

and click "Next."

33 See "Example of Test Connection Failure when Scope=Node" on page 86 for an example of the failure you see when the
scope is at the node level.

© 2013, IBM Corporation 44

WBSR85 - WebSphere Application Server z/OS

 Then select the "Detailed" radio button and click "Next":

 You'll see a long list of steps, for which most the defaults work well. But some you'll need to
modify. Click on "Step 9" and then type or use the browse button to set the JNDI name to
jdbc/type2ds which you set up earlier:

 For "Step 10" do the same type of thing:

 For "Step 11" do the same again:

??? This application has two entity beans. Step 9 provided a default JNDI mapping for the entity
beans, Step 10 mapped the Container Managed Persistence (CMP) bean directly, and Step 11
mapped the Bean Managed Persistence (BMP) bean directly.

 Click on "Step 17 - Summary" then click the "Finish" button.

 Click the "Save" link to save/synchronize the application installation changes:

 Now go back and display the list of all installed applications:

You should see this new application present with a status of "red X":

© 2013, IBM Corporation 45

WBSR85 - WebSphere Application Server z/OS

 Select the box next to the application name and click the "Start" button. You should see the
status go to "green arrow". You may need to click the "refresh" icon to properly reflect the
status:

Eventually you should see "green arrow":

 Now perform a very simple validation of this application. Point your browser at the following
URL:

http://wg31.washington.ibm.com:10067/PolicyIVPV5Web/cebit.html

You should see a very large splash page with a picture of the earth:

 Enter some integer values into both input boxes. What the numbers are doesn't matter, but
they do have to be integers. Then click the "Submit" button.

 Check that you received the "completed successfully" message34:

 Click on the "Return to main page" link, populate the fields with some integer values (same as
before or new), change the radio button from "CMP" to "BMP" and click submit. Again, check
for the "completed successfully" message.

Manual failover testing using MODIFY command

 From the =SDSF.LOG command extension (enter single slash), issue the following command:

F Z9SR01A,FAILOVER,'jdbc/type2ds'

You should see the following messaging indicating success:

BBOO0211I MODIFY COMMAND FAILOVER COMPLETED SUCCESSFULLY

34 If you don't see "completed successfully" there's something wrong. Check the servant region output for clues.

© 2013, IBM Corporation 46

WBSR85 - WebSphere Application Server z/OS

 Now when you drive the PolicyIVP application it should use the defined alternate JNDI name
you defined on the jdbc/type2ds data source back on page 44. Go and re-drive the
PolicyIVP application, then go to the servant output. You should see something like this:
Trace: 2011/11/04 15:34:36.595 02 t=9CB938 c=UNK key=P8 tag= (13007004)
 SourceId: com.ibm.ws.rsadapter.spi.WSRdbDataSource
 ExtendedMessage: BBOO0222I: DSRA8208I: JDBC driver type : 4

That validates that in this simple test the alternate resource was in fact used.

 Now again from =SDSF.LOG command extension, issue the following command:

F Z9SR01A,FAILBACK,'jdbc/type2ds'

You should see the following messaging indicating success:

BBOO0211I MODIFY COMMAND FAILBACK COMPLETED SUCCESSFULLY

 Drive the PolicyIVP application again. It will use the original jdbc/type2ds data source, but
proving that is a bit more difficult with simple single-invocation tests35.

 Open JMeter (if it's not already up) and load the WBSR8.jmx test case. Set the SuperSnoop
and MyIVT thread group user counts each to 0.

 Set the PolicyIVP thread group user count to 1. Then start the testcase (Run Start).

Note: You may be tempted to set the user count higher, but please don't. The JMeter test case has
the policy numbers hard-coded in the request. If you have more than one user thread running
you'll encounter DB2 locking contention as two users try to update the same policy record
simultaneously. JMeter is capable of using dynamic parameter input ... we just haven't coded
it to do that.

 Go to =SDSF.ENC and hit the "enter" key periodically to refresh the screen. You should
occasionally (not all the time) see something like this:

NAME SSType Status SrvClass Per
4800004F34 CB ACTIVE CBCLASS 1
2400000002 STC INACTIVE OPS_LO 1
2000000001 STC INACTIVE SYSTEM 1

Keep hitting "enter" until you see something like that. The point is you should not see an
enclave related to DDF. That means the JDBC traffic is all Type 2. There's no DDF work
being done. The enclave created by WAS is propagated into DB2 because it's Type 2.

 Leave the JMeter test case running. From the command extension issue the command:

F Z9SR01A,FAILOVER,'jdbc/type2ds'

You should see the following messaging indicating success:

BBOO0211I MODIFY COMMAND FAILOVER COMPLETED SUCCESSFULLY

 Go back to =SDSF.ENC and periodically hit enter ... you should eventually see:

NAME SSType Status SrvClass Per
5000005951 CB ACTIVE CBCLASS 1
5400005953 DDF ACTIVE DB_DDF 1
2400000002 STC INACTIVE OPS_LO 1
2000000001 STC INACTIVE SYSTEM 1
2800000003 STC INACTIVE SYSSTC 1
2C00000004 TCP INACTIVE SYSOTHER 1

35 One way would be to use =SDSF.ENC and watch the creation of enclaves. With JDBC T4 you would see the creation of
DDF enclaves. But they come and go quickly so it would be hard to catch it with one-off manual tests. But with JMeter
we would be able to see them better. So that's what we'll use.

© 2013, IBM Corporation 47

WBSR85 - WebSphere Application Server z/OS

The "DDF" enclave means the flow into DB2 is using Type 4. You still see the CBCLASS
service class information because JMeter is still driving WAS. But that enclave is not
propagated into DB2 because Type 4 is in use. Instead, a new enclave is created when the
request hits the DB2 listener service (DSNXDIST).

 Time to fail it back. From the command extension issue the command:

F Z9SR01A,FAILBACK,'jdbc/type2ds'

You should see the following messaging indicating success:

BBOO0211I MODIFY COMMAND FAILBACK COMPLETED SUCCESSFULLY

 If you go back to =SDSF.ENC you should see the CBCLASS-related enclaves, but no DDF-
related enclaves. You've reverted back to using Type 2.

 Stop the JMeter test case (Run Stop).

Lesson: What you just did illustrated manual failover and failback, which would be useful for
planned outages of local DB2 resources.

Next we'll illustrate unplanned outages. We'll cancel the local DB2 and watch as WAS
detects the loss and automatically fails over to the alternate JNDI.

We only have one DB2 subsystem on each team's guest z/OS system. So what we'll do
is modify the Type 4 data source and point it to a unused but operational workshop guest
with DB2. Your work will flow there.

Automatic failover and failback

 In the Admin Console go to Resources JDBC Data sources. Set the "scope" equal to
the z9sr01a server. You should see your two data sources displayed:

 Click on the type4ds data source. Scroll to the bottom and change the "Server Name" field
so it points to 192.168.17.220 rather than wg31.washington.ibm.com:

Then click "OK" and save and synchronize the change.

??? We're about to have you kill your instance of DB2. We're simulating failover to another LPAR in
a Sysplex, but in this case it's a different z/OS system. The "220 System" is one of the guest
z/OS systems on our z/VM LPAR where DB2 is running.

© 2013, IBM Corporation 48

WBSR85 - WebSphere Application Server z/OS

 When synchronization completes, check the box next to jdbc/type4ds and then click on
the "Test Connection" button. You should see the indication of success.

 Now click on the jdbc/type2ds data source link. You're going to add a few more
connection pool custom properties.

 Just as you did before, drill into the custom properties:

You should see your one custom property created earlier:

 Using the "New" button, create two new custom properties:

Name Value Notes

failureThreshold 2 1

resourceAvailabilityTestRetryInterval 10 2

Notes:
(1) Indicates how many failed attempts to the primary data source are needed to trigger the automatic failover to
the alternate. Here you're indicate two failed attempts.

(2) Indicates how frequently (in seconds) WAS should poll the failed primary to see if it is back available. In this
case you're indicating 10 seconds.

When you're done it should look like this:

 Save and synchronize the changes.

 Stop and restart the z9sr01a server to pick up those custom properties.

Note: We won't use JMeter for this because with so many reqeusts flowing so rapidly things go by
too quickly. You'll miss the key messages indicating detection outage and detection of
recovery. So we'll do things manually so we can observe these things in action.

 Point your browser at the following URL:

http://wg31.washington.ibm.com:10067/PolicyIVPV5Web/cebit.html

 Enter some integer value for each policy number then click the "Submit" button. You should
see an indication of success on the results screen:

At least one successful connection to the primary is required before failover will take place.

© 2013, IBM Corporation 49

WBSR85 - WebSphere Application Server z/OS

 From =SDSF.LOG, issue the following command to bring down DB2 quickly,

/-DSNX STOP DB2 MODE(FORCE)

This will simulate an abrupt failure of DB2. Give it a moment or two to come down.

 Go back to the browser and drive a request. You should get a failure indicator on the browser
screen

as well as stack traces in the servant region.

This is failure number 1 within the threshold value you set of 2.

 Drive the browser request again. You'll get another failure on the browser and another set of
stack traces in the servant output.

This is failure number 2 within the threshold value you set of 2, which should trigger the
automatic failover to the alternate JNDI. You should see this in the servant output:
Trace: 2011/11/04 17:42:32.018 02 t=9C8C68 c=UNK key=P8 tag= (13007004)
 SourceId: com.ibm.ws.rsadapter.spi.WSRdbDataSource
 ExtendedMessage: BBOO0222I: DSRA8208I: JDBC driver type : 4

That indicates it has automatically failed over to the alternate data source.

 Go back to the browser and drive another request. This time you should see success, both
on your browser screen and in your servant output.

Note: Your local DB2 is shut down. If you're seeing success then it must mean you're going
somewhere for that JDBC connection. The only knowledge your WAS has of other DB2
resources is in your jdbc/type4ds data source. And that's what's named as the alternative
JNDI resource when the local is deemed unreachable based on the threshold number.

 From =SDSF.LOG, issue the following command to restart your local DB2:

/-DSNX START DB2

 Wait about 30 or 45 seconds for two things to happen: (1) DB2 to come back up, and (2) WAS
to recognize that the local DB2 is back up. Recall you set the polling interval to 10 seconds.

Watch the servant output for this message, indicating the local resource is back:
Trace: 2011/11/04 17:43:22.216 02 t=9CCA48 c=UNK key=P8 tag= (13007004)
 SourceId: com.ibm.ejs.j2c.DataSourceConnectionFactoryFailoverTimer
 ExtendedMessage: BBOO0222I: J2CA0682I: The configured resource with a
 JNDI name of jdbc/type2ds is available to process new requests for
 the resource with a JNDI name of jdbc/type2ds.

 From the browser drive another request. This should be successful and will be using your
jdbc/type2ds local connection to the local DB2 resource.

Additional z/OS function related to availability enhancements

Note: What happens if both the primary and alternate data resources are unreachable? Then you need
some actions of last resort. That's what we'll look at now ... three exclusive z/OS functions:

(1) Issue a message but take no other action -- useful with system automation tools

(2) Stop the listeners on the application servers that have applications that use resources that
have failed -- useful so front-end routing function may then route around the problem

(3) Stop the applications that are using resource references where the backend resource has
failed -- this allows other applications not using the failed resources to continue

© 2013, IBM Corporation 50

WBSR85 - WebSphere Application Server z/OS

 Go into the jdbc/type4ds data source and change the "Server name" value from
192.168.17.220 back to wg31.washington.ibm.com. This eliminates any viable
backup DB2, which enables this "last resort" function to take effect.

 Go back to the jdbc/type2ds data source connection pool custom properties. Add the
following property to those already present:

Name Value

failureNotificationActionCode 1

 Save and synchronize the changes.

 Stop and restart the server to pick up the changes.

 Important: from the browser, invoke PolicyIVP once more to show that it works using
jdbc/type2ds to the local copy of DB2.

 From =SDSF.LOG, issue the following command to bring down DB2 quickly:

/-DSNX STOP DB2 MODE(FORCE)

 From the browser, invoke PolicyIVP twice (the threshold level). You'll see failures each time36.

 Go to =SDSF.ST, set PREFIX=Z9 and then put a question mark (?) next to the Z9SR01A
controller region.

 Then put an S next to HRDCPYDD and hit enter. Scroll to the bottom and you should see:

BBOJ0130I: CONNECTION MANAGEMENT IN A SERVANT REGION DETECTED THAT THE
RESOURCE IDENTIFIED BY JNDI NAME jdbc/type2ds IS DISCONNECTED FROM SERVER
z9cell/z9nodea/Z9SR01/z9sr01a. ACTION TAKEN: NONE.

Note: That's it ... just this message. Nothing else when the value of the action code is "1".

 Restart DB2 with this command:

/-DSNX START DB2

 Go back to the HRDCPYDD output in the controller and after the 10 second polling interval you
should see:

BBOJ0131I: RESTORATIVE ACTION IS BEING TAKEN FOR THE RESOURCE
IDENTIFIED BY JNDI NAME jdbc/type2ds ON SERVER
z9cell/z9nodea/Z9SR01/z9sr01a, REASON=1. ACTION TAKEN: NONE.

Note: Again, that's it ... just a message. But this does indicate that WAS detected the resumption of
DB2. With these messages and system automation you may program other actions to take in
the event of an outage. Admittedly this is a very simple action code. More is coming next.

 Change the failureNotificationActionCode value from 1 to 2.

 Save and synchronize

 Stop and restart the server.

 Important: successfully drive PolicyIVP once.

 Shut down DB2 with /-DSNX STOP DB2 MODE(FORCE)

36 You'd see a failure even on invocation 3 or beyond since we changed the jdbc/type4ds data source back to the local
DB2, which is now down. The failureNotificationActionCode function only invokes if there is no access to a
data resource. Had we left that data source pointing to 192.168.17.220 the failover would have been successful and
what we're trying to achieve with this lab would never appear.

© 2013, IBM Corporation 51

WBSR85 - WebSphere Application Server z/OS

 Drive PolicyIVP twice with failures to trigger the theshold value of 2. In the HRDCPYDD of the
controller region you should see:
BBOJ0130I: CONNECTION MANAGEMENT IN A SERVANT REGION DETECTED THAT THE
RESOURCE IDENTIFIED BY JNDI NAME jdbc/type2ds IS DISCONNECTED
FROM SERVER z9cell/z9nodea/Z9SR01/z9sr01a. ACTION TAKEN: PAUSING LISTENERS.
BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_1 has stopped
listening on host * port 10065.
BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_3 has stopped
listening on host * port 10066.
BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_2 has stopped
listening on host * port 10067.
BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_4 has stopped
listening on host * port 10068.

Note: Many front-end routing devices -- the WAS Plugin included -- will key off the lack of a listener
port to conclude that work should no longer be routed there. That's the purpose of this
function ... to make the server with the lost backend resource "go dark" so front-end routers
may then begin routing around the problem.

 Open a TeraTerm or PuTTY session to your system and log with ID Z9ADMIN. Issue the
following command:

netstat | grep Z9SR01A

You should see a listing of the ports for that server, but you will not see ports 10065 - 68 in the
list:
Z9SR01A 0000CCD1 127.0.0.1..37692 127.0.0.1..10029 Establsh
Z9SR01A 0000CCBB 0.0.0.0..10070 0.0.0.0..0 Listen
Z9SR01A 0000CCBE 127.0.0.1..10069 0.0.0.0..0 Listen
Z9SR01A 0000CCD4 127.0.0.1..37693 127.0.0.1..10029 Establsh
Z9SR01A 0000CCAE 0.0.0.0..10064 0.0.0.0..0 Listen
Z9SR01A 0000CCC1 192.168.17.211..10070 192.168.17.211..37687 Establsh
Z9SR01A 0000CCAD 0.0.0.0..10063 0.0.0.0..0 Listen
Z9SR01A 0000CCBD 0.0.0.0..10062 0.0.0.0..0 Listen
Z9SR01A 0000CCC4 192.168.17.211..10070 192.168.17.211..37688 Establsh
Z9SR01A 0000CCCF 0.0.0.0..10039 *..* UDP

 Restart DB2 with /-DSNX START DB2 ... give it 30 or so seconds then check the
HRDCPYDD of the controller region. You should see:

BBOJ0131I: RESTORATIVE ACTION IS BEING TAKEN FOR THE RESOURCE IDENTIFIED
BY JNDI NAME jdbc/type2ds ON SERVER z9cell/z9nodea/Z9SR01/z9sr01a, REASON=1.
ACTION TAKEN: RESUMING LISTENERS.
BBOO0222I: ZAIO0001I: z/OS asynchronous IO TCP Channel TCP_1 is listening
on host * port 10065.
BBOO0222I: CHFW0019I: The Transport Channel Service has started
chain WCInboundAdmin.
BBOO0222I: ZAIO0001I: z/OS asynchronous IO TCP Channel TCP_2 is listening
on host * port 10067.
BBOO0222I: CHFW0019I: The Transport Channel Service has started
chain WCInboundDefault.
BBOO0222I: ZAIO0001I: z/OS asynchronous IO TCP Channel TCP_3 is listening
on host * port 10066.
BBOO0222I: CHFW0019I: The Transport Channel Service has started
chain WCInboundAdminSecure.
BBOO0222I: ZAIO0001I: z/OS asynchronous IO TCP Channel TCP_4 is listening
on host * port 10068.

© 2013, IBM Corporation 52

WBSR85 - WebSphere Application Server z/OS

Note: Upon detection of the return of DB2 WAS z/OS restarts the listeners. Front-end routing
functions that heartbeat the ports will see the server as back and available and will begin
routing to the server again.

 Change the failureNotificationActionCode value from 2 to 3.

 Save and synchronize

 Stop and restart the server.

 Important: successfully drive PolicyIVP once.

 Shut down DB2 with /-DSNX STOP DB2 MODE(FORCE)

 Drive PolicyIVP twice with failures to trigger the theshold value of 2. In the HRDCPYDD of the
controller region you should see:
BBOJ0130I: CONNECTION MANAGEMENT IN A SERVANT REGION DETECTED THAT THE
RESOURCE IDENTIFIED BY JNDI NAME jdbc/type2ds IS DISCONNECTED FROM SERVER
z9cell/z9nodea/Z9SR01/z9sr01a. ACTION TAKEN: STOPPING APPLICATIONS THAT
USE THIS RESOURCE.

 Go to Applications Application Types WebSphere enterprise applications. There you
should see a listing of the deployed applications and the status of each. You should see
something like this:

Note: The downside to PAUSELISTENERS is it affects all the applications in the server. This action
seeks to remedy that by stopping only those applications that use the JNDI reference for the
failed backend resource. In our case that's just PolicyIVPV5.

A note of caution -- many front-end routing functions do not "see" the Java EE state of the
applications. So it's possible this will allow those routing functions to route work to a stopped
application, which will result in error messages being returned. More intelligent front-end
functions such as the WAS Proxy Server or the WAS On Demand Router are aware of the
Java EE application state.

 Restart DB2 with -DSNX START DB2 ... give it 30 or so seconds then check the HRDCPYDD
of the controller region. You should see:
BBOJ0131I: RESTORATIVE ACTION IS BEING TAKEN FOR THE RESOURCE IDENTIFIED
BY JNDI NAME jdbc/type2ds ON SERVER z9cell/z9nodea/Z9SR01/z9sr01a,
REASON=1. ACTION TAKEN: STARTING APPLICATIONS THAT USE THIS RESOURCE.

 If you go back to the list of applications you'll see PolicyIVP restarted:

You may need to invoke the "refresh" twisty to see the indicator change to green arrow:

© 2013, IBM Corporation 53

WBSR85 - WebSphere Application Server z/OS

CICS

Note: The focus of the CICS-related labs is to show how to connect from WAS into CICS in three
modes: (1) local EXCI; (2) using the gateway daemon task; and (3) using IPIC.

Install the resource adapter and define the connection factories

 In the Admin Console, go to Resources Resource Adapters Resource adapters

 Then do the following:

 Then point to where WAS should get the RAR file:

 On the next panel, update the "Native library path" and provide information about where the
CTG shared object files are located:

 You should the new resource adapter in the list:

Click on that link to begin the process of defining the connection factories.

© 2013, IBM Corporation 54

WBSR85 - WebSphere Application Server z/OS

 Then do the following:

 That "Apply" un-grayed some links on that page. Now do the following to name the CICS
region to connect to:

 Save and synchronize changes made to this point.

 Go back to Resources Resource Adapters Resource adapters.

 Click on the resource adapter link, then on "J2C connection factories"

 You should see the connection factory you just created:

Click on the "New" button to create another connection factory.

© 2013, IBM Corporation 55

WBSR85 - WebSphere Application Server z/OS

 Supply a name and JNDI name:

and then click "Apply" to un-gray the links at the top right of the screen.

 Click on the "Custom properties" link

 Click on the "ConnectionURL" link and change the default value. When finished, click "OK."

Before: local:

After: tcp://wg31.washington.ibm.com
Note: this tells the CICS resource adapter to send the request over TCP rather than using local EXCI.

 Note the value of the "PortNumber" custom property. It should default to 2006. This is also
the default port used by the CTG gateway daemon, which you'll start in just a moment.

 Save and synchronize all your changes.

 Go back and look at your list of connection factories under the resource adapter. You should
now see both:

Install the simple CICS sample application

 In the Admin Console, go to Applications New application New Enterprise Application.

 Indicate where WAS should get the application EAR:

© 2013, IBM Corporation 56

WBSR85 - WebSphere Application Server z/OS

 Then select "Detailed" and click "Next:"

 Then do the following37:

 Click on "Step 8" and then set the resource reference to the JNDI name of your local
connection factory:

You may hand type the JNDI string or use the "Browse" button.

 Click on "Step 14 - Summary" then click the "Finish" button.

 Stop and restart the z9sr01a server to pick up the changes.

Test local EXCI connection to CICS

 Go to =SDSF.LOG and start the CICSX region with the z/OS command:

/S CICSX
Look for this message as an indication of success:

+DFHSI1517 CICSX Control is being given to CICS.

37 An odd quirk with this application. The servlet has two EJB references and the application is supposed to have two target
EJBs. But it really only has one. So we'll simply point both references to the same bean.

© 2013, IBM Corporation 57

WBSR85 - WebSphere Application Server z/OS

 By this time your z9sr01a server should be up38. Point your browser at:

http://wg31.washington.ibm.com:10067/ECIDateTimeWeb/index.html

Then click the "Submit" button the web page.

 If things work as they're supposed to, you should see today's date and time displayed twice:

That test used the local EXCI connection into the CICSX region. If you don't see the date and
time stamps, then something isn't working properly. Check the servant output for clues.

Using IPIC

Overview The CICSX server has the necessary TCPIPSERVICE and IPCONN definitions. All you need
to do is re-configure the connection factory to point to the CICS region and use it.

 Go back to the custom properties of your ctg-local connection factory.

 Modify the properties so the following five properties contain these values:

 Save and synchronize the changes.

 Stop and restart your z9sr01a application server

 Point your browser at the application:

http://wg31.washington.ibm.com:10067/ECIDateTimeWeb/index.html

Then click the "Submit" button the web page. You should see the same sign of success you
saw before.

38 Check to be sure: Servers Server Types WebSphere application servers. Check for green arrow.

© 2013, IBM Corporation 58

WBSR85 - WebSphere Application Server z/OS

Change application to use the gateway daemon and test that connection

 Stop the CICSX region by issuing the following command from =SDSF.LOG:

/F CICSX,CEMT PERFORM SHUTDOWN

Why? We wish to "prove" your application is using the ctg-gateway connection factory. The
application is so simple no footprints are left to see where the request actually went. By
bringing down CICSX we know the ctg-local CF would fail. You'll see that ctg-gateway
works because the gateway is coded to talk to CICSY.

 When CICSX comes down, start CICSY:

/S CICSY
 Start the CICS Transaction Gateway Daemon by submitting the JCL found at

USER1.WAS.CNTL(CTGJOB).

 Go to =SDSF.LOG and you should see the following messages:

CTG6400I CTGAPPLD CICS TRANSACTION GATEWAY IS STARTING
CTG6512I CTGAPPLD CICS TRANSACTION GATEWAY INITIALIZATION COMPLETE

 Go to =6 and issue the command NETSTAT. You should see in that list of TCP ports the
following:

That shows that the Gateway Daemon is listening on its default port of 2006. And if you have
a really good memory J you'll recall the following default custom property in the connection
factories you built:

Next you're going to change the application to use the ctg-gateway connection factory, which
has ConnectionURL=tcp://wg31.washington.ibm.com and PortNumber=2006. In
other words, the application will communicate with the Gateway Daemon to access CICS.

 In the Admin Console, go to Applications Application Types WebSphere enterprise
applications. Click on the ECIDateTimeAD01 application link.

 Then do the following:

© 2013, IBM Corporation 59

WBSR85 - WebSphere Application Server z/OS

 You should then see the resource reference panel again, but this time updated with JNDI
name for the "gateway" connection factory:

 Save and synchronize the change. WAS will automatically stop and restart the application to
pick up the change.

 In your browser, re-invoke the URL:

http://wg31.washington.ibm.com:10067/ECIDateTimeWeb/index.html

and again, click the "Submit" button.

 You should see the same success as before -- the date and time stamps. But this time the
access path was through the CTG Gateway Daemon and into CICSY.

Cleanup

 Go to =SDSF.LOG and issue the following commands to clean up the CICS environment:

/F CICSY,CEMT P SHUTDOWN

/P CTGJOB

MQ

Note: This will be a relatively short lab section -- create the JMS definitions to connect to the local MQ
queue manager, then drive a simple application that puts message on the MQ queue, then pulls it
back. This demonstrates connectivity to MQ using WAS's JMS support.

Start MQ

 From =SDSF.LOG, enter the command /-MQS1 START QMGR

Create JMS definitions for MQ queue manager and MQ queue

 In the Admin Console, go to Resources JMS JMS providers.

 Then:

© 2013, IBM Corporation 60

WBSR85 - WebSphere Application Server z/OS

 Then do the following:

 That'll take you back to the list of JMS providers at the node level. Do the following:

 Then:

© 2013, IBM Corporation 61

WBSR85 - WebSphere Application Server z/OS

 Then provide information about how to access the MQS1 queue manager:

 The next panel has a "Test Connection" button. Give it a try.

 Click "Next" and "Finish" to complete the wizard. Save and synchronize.

Note: The "Queue Connection Factory" defines the connection to the MQ queue manager. You
have provided the information needed for both BINDINGS as well as CLIENT to the MQS1
queue manager on your lab system.

 Next, do the following:

Note: The "Queue" definition provides an abstraction of the real MQ queue name.

 Save and synchronize all the changes.

Install the sample JMS application and test connection to MQ

 In the Admin Console, go to Applications New application New Enterprise Application.

 Location of EAR file to install:

/wasetc/was8lab/applications/SimpleJMS.ear

 Take the "Fast Path"

© 2013, IBM Corporation 62

WBSR85 - WebSphere Application Server z/OS

 For "Step 3" you'll see WAS calling for resolution of the resource references. The top two are
for the input and output queues, which you'll map to the one queue you defined. The bottom
reference is for the queue manager.

 Finish the installation and save / synchronize.

 Stop and restart the z9sr01a server to pick up the new definitions to MQ.

 Point your browser to the following URL:

http://wg31.washington.ibm.com:10067/SimpleJMS/getMessages

 Then enter some test message into the input field:

 Then click the "Get" button and you should see:

 Try "PUT" multiple times, adding a different message each time. Then click on "GET."

Stop MQ

 From =SDSF.LOG, enter the command /-MQS1 STOP QMGR

 End of Unit 4 Lab

© 2013, IBM Corporation 63

WBSR85 - WebSphere Application Server z/OS

Unit 6 Lab - WebSphere Optimized Local Adapters
Setup of WOLA in WAS runtime

Note: This is a relatively simple process -- creation of two cell-level variables and the installation of the
WOLA RAR file.

 In the Admin Console go to the environment variable panel and set the scope to "cell" and
then click "New":

 Create the first environment variable:

 Then create the second:

Name ola_cicsuser_identity_propagate

Value 1

 Save and synchronize the changes.

 Begin the process of installing the resource adapter:

© 2013, IBM Corporation 64

WBSR85 - WebSphere Application Server z/OS

 Then ...

 On the "General Properties" panel just click OK:

 Then:

© 2013, IBM Corporation 65

WBSR85 - WebSphere Application Server z/OS

 And on the General Properties provide a name and JNDI name39 and click OK:

 Install the following application into your first server:

/shared/zWebSphere/V8R5FP02/util/zos/OLASamples/OLASample2.ear

 Take the "Fast Path"

 For "Step 2" make sure application is mapped to server "z9sr01a" (which is default)

 For "Step 3," make sure all module "resource references" are mapped to eis/ola

 Take all the other defaults and finish up the application installation

 Save and synchronize your changes.

 Important! Shut down your entire WAS cell with the following MVS command: /P Z9DEMN

This stops the Daemon, which will stop every other server in the cell on this LPAR

Setup of WOLA in CICS region CICSX

Note: We've done a little of the 3270 green screen work for you ahead of time.

 Take a look at the contents of the USER1.WAS8.WOLA.LOADLIB data set. The members in
that data set are the WOLA native modules.
We populated that LIBRARY data set ahead of time by running the copyZOS.sh shell script40. That
shell script resides in the node's /profiles/default/bin directory.

 Now look at the USER1.WAS8.WOLA.SAMPLES data set. The members in that data set are
the WOLA samples, including sample JCL you'll run to update CICS.
We populated that FB 80 data set ahead of time by running the copyZOS.sh shell script as well41.

39 The JNDI may be any string. The default is eis/ola and we'll take that so the sample app deploy may take defaults.
40 Command: ./copyZOS.sh OLAMODS 'USER1.WAS8.WOLA.LOADLIB'
41 Command: ./copyZOS.sh OLASAMPS 'USER1.WAS8.WOLA.SAMPLES'

© 2013, IBM Corporation 66

WBSR85 - WebSphere Application Server z/OS

 The first job you'll run42 is CSDUPDAT which updates the CICSX region's CSD. Browse the
member, and when ready submit and insure RC=0 before continuing on.

 The next job you'll run is DFHPLTOL which creates a PLTPI program to start the Task Related
User Exit when CICS starts. Browse the member and when ready submit and check for
successful completion.

 Browse the OLAMAP member. This is the BMS map for the "OLAUTIL" 3270 sample
application. Submit and insure successful completion.

 Browse the OLAUTIL member. This is the sample application that uses the OLAMAP BMS.
Submit and insure successful completion.

 Browse the OLACB01 member. This is a simple echo program that runs in CICS.
Submit and insure successful completion.

 Edit the CICSX.CICS42.SYSIN(CICSXSIP) member and add the following line:

 Edit the SYS1.PROCLIB(CICSX) member and add the following:

 Finally, issue the following two commands from TSO Option 6 to grant the CICS region ID
access to the WAS runtime:

PERMIT CB.BIND.Z9* CLASS(CBIND) ID(CICSX) ACCESS(READ)

SETROPTS RACLIST(CBIND) REFRESH

Restart the environment and validate
 Start the WAS deployment manager:

S Z9DCR,JOBNAME=Z9DMGR,ENV=Z9CELL.Z9DMNODE.Z9DMGR

 When the DMGR has initialized, check the Daemon (Z9DEMN) held output and verify the
following is present43:

BBOM0001I daemonName: Z9CELL.
BBOM0001I default_internal_work_transaction_class: NOT SET.
BBOM0001I enable_adapter: 1.
BBOM0001I iiop_max_msg_megsize: NOT SET, DEFAULT=0.

42 We updated the job with the proper high-level qualifiers for this system simply to reduce your typing.
43 This validates the cell level WAS environment variable "enable_adapter" is in effect.

© 2013, IBM Corporation 67

WBSR85 - WebSphere Application Server z/OS

 Check the DMGR's controller region (Z9DMGR) held output and verify the following is
present44:

BBOM0001I odr_tclass_propogation_enabled: NOT SET, DEFAULT=1.
BBOM0001I ola_cicsuser_identity_propagate: 1.

 Start the node agent:

S Z9ACRA,JOBNAME=Z9AGNTA,ENV=Z9CELL.Z9NODEA.Z9AGNTA

 In the Admin Console go to System Administration Nodes. Make sure the synchronization
status for the z9nodea node shows a green circle, meaning "synchronized." If it shows a
broken red circle (not synchronized), then check the node checkbox and click "synchronize."

 From the Admin Console, start the first server.

 In the Admin Console, verify the OLASample2 application is started.

 Now start CICS:

/S CICSX

 Give it a few moments, then check the CICS region's output for the following45:

+BBOA9920I WAS z/OS OLA CICS PLT init start.
+BBOA9921I WAS z/OS OLA CICS TRUE enabled.
+BBOA9925I WAS z/OS OLA CICS PLT init ending.
+BBOA9940I WAS z/OS OLA CICS PLT init 2 start.

and46:

Resource definition for BBOACALL has been added.

Start Link Server Task, Register into WAS and perform basic tests

Note: You'll make use of the sample application in WAS (OLASample2.ear), the compiled echo
program in CICS (OLACB01) and the 3270 sample application (OLAUTIL).

 Click on the icon to launch the 3270 screen, then right-click the mouse and select "Clear":

 On the now blank screen, issue:

LOGON APPLID(CICSX)

 At the CICS screen right mouse click and select "Clear" again.

44 This validates the cell level WAS environment variable allowing the CICS ID to propagate inbound is present.
45 These messages in CICS verifies the PLTPI (job DFHPLTOL)and update to the SIP member took effect.
46 The first of many messages verifying the update of the CSD (job CSDUPDAT)

© 2013, IBM Corporation 68

WBSR85 - WebSphere Application Server z/OS

 On the now blank screen, issue the following command all on one line47:

BBOC START_SRVR RGN=CICSXREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01A

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y

You should see:

BBOA8000I Start server completed successfully.

Note: If you get RC and RSN numbers, go to the WAS V8.548 InfoCenter and search on
cdat_olaapis and look under the BBOA1REG API for the RC/RSN values.

If you left some of those parameter off defaults would be taken. It would still work, but you
would see "Start server completed with warnings."

 Go back to the MVS console session and issue the following command:

F Z9SR01A,DISPLAY,ADAPTER,DAEMONRGES

You should see:

F Z9SR01A,DISPLAY,ADAPTER,DAEMONRGES
BBOA0007I: SHOWING REGISTRATIONS FOR DAEMON GROUP:
BBOA0003I: Name Jobname SWT TL Min Max Act State
BBOA0004I: CICSXREG CICSX 000 00 0001 0010 0001 00
BBOA0004I: $WASDEFAULT$ CICSX 000 00 0000 0001 0000 00
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,ADAPTER,DAEMONRGES

 The first test will be inbound, CICS WAS. Clear the CICS session screen one more time
and issue the command OLAUTIL. When the OLAUTIL panel comes up, do the following:

47 Syntax documented in InfoCenter, search string rdat_cics. Hint: compose in Notepad first, then copy/paste into the
3270 session.

48 http://publib.boulder.ibm.com/infocenter/wasinfo/v8r5/index.jsp

© 2013, IBM Corporation 69

WBSR85 - WebSphere Application Server z/OS

You should see:

Received message data
==> : WAS V8 Wildfire

and

Invoke requested ... calls completed ok
 Start time: 10102011 220446
 Stop time : 10102011 220446 DONE Count: 00000001

Note: That was a single invocation of the OLASample2.ear application in WAS.

 The next test will be outbound, WAS CICS. From a browser, go to:

http://wg31.washington.ibm.com:10067/OLA_Sample2_Web/

 From the web page, do the following:

Note: OLACB01 was the sample COBOL program you compiled a few steps back. That sample has
no WOLA APIs at all ... it's just a simple COMMAREA echo program. WOLA is "hidden" from
OLACB01 by the WOLA Link Server Task.

 If successful, the output back should show the data you sent:

© 2013, IBM Corporation 70

WBSR85 - WebSphere Application Server z/OS

Inbound: CICS OLAUTIL application to WAS

Note: Here you'll start to make use of the WOLA APIs in COBOL. When inbound from WAS to CICS the
Link Server Task is not used. Use of APIs is required somewhere in the mix.

 Before we move on to compiling batch jobs that use the WOLA APIs, use the OLAUTIL 3270
application in CICS one more time to drive multiple messages into WAS:
 From the CICS 3270 session, get back to the OLAUTIL application
 Do the following:

 After a moment you should see something like this:
Invoke requested ... calls completed ok
 Start time: 10112011 110425
 Stop time : 10112011 110430 DONE Count: 00001000

Note: That drove 1,000 messages into WAS. What elapsed time do you see?

That program did not use the Link Server Task. If you were to look at the OLAUTIL
sample you compiled earlier you'd see it makes extensive use of the WOLA APIs, one of
which is BBOA1INV. Next you'll compile and run programs to use the APIs to drive work
from a batch program into WAS.

 From the CICS 3270 screen issue the following command49:

BBOC STOP_SRVR RGN=CICSXREG

This will de-register from the WAS server. You should see the following message:
BBOA8000I Stop server completed successfully.

49 Just cleaning up the registration used by OLAUTIL. The batch COBOL will register using the BBOA1REG API.

© 2013, IBM Corporation 71

WBSR85 - WebSphere Application Server z/OS

Inbound: batch applications to WAS

Note: Here you'll start to make use of the WOLA APIs in COBOL. When inbound from WAS to CICS the
Link Server Task is not used. Use of APIs is required somewhere in the mix.

 Now browse the USER1.WAS8.WOLA.CNTL data set. You'll see the following50:

 Browse the EXER2A member and note the structure of the COBOL code:

 Now edit the EXER2A member and customize51 the COBOL with the following:

Save the file.

50 These exercises are from the "WOLA Primer" found in the WP101490 document at ibm.com/support/techdocs
51 Cell = Z9CELL, Node = Z9NODEA, Server = Z9SR01A

© 2013, IBM Corporation 72

WBSR85 - WebSphere Application Server z/OS

 Edit the COMPILE member and make the following customization:

Save the file.

 Submit the COMPILE member to compile the program.

 Edit the RUNPROG member and make the following customization:

Save the file.

 Submit RUNPROG to run the program. Look for RC=0. You should see the following in the
held output for the job:

Successfully registered into Z9CELL
Message sent: This is a test message
Message back: This is a test message
Successfully unregistered from Z9CELL

© 2013, IBM Corporation 73

WBSR85 - WebSphere Application Server z/OS

 Browse the EXER2B member and note the structure of the COBOL, which includes a loop
structure around the BBOA1INV API (line 75 is the PERFORM UNTIL statement):

 Edit EXER2B and customized much like you did for the first job:

 Compile that program using the COMPILE job. Update all three references to the program
name.

 Update the RUNPROG member and run the batch job. This will drive 10 message into WAS
and the output should look like this:
Successfully registered into Z9CELL
Message sent: 0001 This is a test message
Message back: 0001 This is a test message
Message sent: 0002 This is a test message
Message back: 0002 This is a test message
Message sent: 0003 This is a test message
Message back: 0003 This is a test message
Message sent: 0004 This is a test message
Message back: 0004 This is a test message
Message sent: 0005 This is a test message
Message back: 0005 This is a test message
Message sent: 0006 This is a test message
Message back: 0006 This is a test message
Message sent: 0007 This is a test message
Message back: 0007 This is a test message

© 2013, IBM Corporation 74

WBSR85 - WebSphere Application Server z/OS

Message sent: 0008 This is a test message
Message back: 0008 This is a test message
Message sent: 0009 This is a test message
Message back: 0009 This is a test message
Message sent: 0010 This is a test message
Message back: 0010 This is a test message
Successfully unregistered from Z9CELL

 Go back in the EXER2B source and change the loop count value from 10 to 5000. Compile
and submit. Look in the held output for the elapsed time and CPU time spent:

What's the elapsed time per message for the 5,000 messages sent and received?

Note: The CPU time does not include WAS. It is just the batch job itself. And the work being
exercised in WAS is a trivial echo program.

 Now go browse the EXER2D member and note the structure, which looks like this:

Note: The combination of CNG, SRQ, GET and CNR is equivalent to the simpler BBOA1INV. The
"advanced" APIs offer greater control. Here we're showing the re-use of the connection rather
than returning it to the pool each invocation like BBOA1INV does. The advanced APIs also
provide asynchronous program control, though this example is still using synchronous.

© 2013, IBM Corporation 75

WBSR85 - WebSphere Application Server z/OS

 Edit the EXER2D member and update the cell, node and server short names (lines 44-46) and
change the loop count variable (line 48) to 5000.

 Compile and run the program. Look at the elapsed and CPU time and compare to the
EXER2B run which used BBOA1INV.

Note: There's a degree more efficiency in EXER2D than EXER2B because we're re-using the
connection. The numbers probably won't be dramatically different. And we're running "only"
5,000 invocations, which is relatively small for some batch processes. Small gains in
efficiency accumulate when repeated tens or hundreds of thousands of times.

Outbound: WAS to CICS using Link Server Task

Note: When going outbound from WAS to CICS you may use the Link Server Task to "hide" WOLA from
the target program, or bypass the Link Server Task and "Host a Service" directly. In this lab you'll
use the Link Server and drive the OLACB01 program, which has no WOLA knowledge at all. The
Link Server Task hides WOLA from the simple echo program.

 Open a 3270 session, clear the screen, then issue the command:

logon applid(CICSX)

 Clear the CICS logo screen and issue the following command all on one line:

BBOC START_SRVR RGN=CICSXREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01A

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y
You should see:
BBOA8000I Start server completed successfully.

 Check the WOLA registration into the server ... issue the following command from the MVS
console:

F Z9SR01A,DISPLAY,ADAPTER,DAEMONRGES

If the registration is still in place you should see:
BBOA0007I: SHOWING REGISTRATIONS FOR DAEMON GROUP:
BBOA0003I: Name Jobname SWT TL Min Max Act State
BBOA0004I: CICSXREG CICSX 000 00 0001 0010 0002 00
BBOA0004I: $WASDEFAULT$ CICSX 000 00 0000 0001 0000 00
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,ADAPTER,DAEMONRGES

 Install into the first server the following application:

/wasetc/was8lab/applications/ATSSample1-new.ear

Map the unresolved resource reference to the WOLA JNDI of eis/ola. Take all the other
defaults.

 Check to see if the application is started:

If not started, select the checkbox next to the application and click "Start."

© 2013, IBM Corporation 76

WBSR85 - WebSphere Application Server z/OS

 Point your browser at the following URL:

http://wg31.washington.ibm.com:10067/ATSSample1Web/

 Fill in the form as follows:

 You should see something like this:

 Use the browser "back" button to return to the main application panel. Change the "Number
of times to call external address space:" value to 100. Click the button again. You should se
the response panel again, but this time with 100 echoed messages.

 Do it again but this time with 1000 for the value of the messages to send.

Outbound: WAS to CICS with "alternative JNDI failover"

Note: Next we'll illustrate how to use the V8 function that allows for failover to a backup CICS region. In
this lab that backup CICS region will be CICSY. That means we first must to do a little bit of setup
work for CICSY so WOLA is enabled there.

 Close the registration from CICSX into WAS. From the CICS 3270 session52 issue the
following command:

BBOC STOP_SRVR RGN=CICSXREG

52 Open a 3270 session, clear the screen, issue LOGON APPLID(CICSX), then clear the CICS screen and issue command.

© 2013, IBM Corporation 77

WBSR85 - WebSphere Application Server z/OS

 Clear the CICS screen and issue the command CESF LOGOFF.

 Stop CICSX -- /F CICSX,CEMT PERFORM SHUTDOWN

 Restart CICSX53 -- /S CICSX

 Edit the CICSY.CICS42.SYSIN(CICSYSIP) member and add the following line:

 Update the SYS1.PROCLIB(CICSY) member and add the following line to DFHPRL:

 Once again, issue the following two commands from TSO Option 6 to grant the CICS region
ID access to the WAS runtime, this time for the CICSY ID:

PERMIT CB.BIND.Z9* CLASS(CBIND) ID(CICSY) ACCESS(READ)

SETROPTS RACLIST(CBIND) REFRESH

 Issue the command /S CICSY and then look for the following in the region's output for
validation that the PLTPI initialized the Task Related User Exit:

+BBOA9920I WAS z/OS OLA CICS PLT init start.
+BBOA9921I WAS z/OS OLA CICS TRUE enabled.
+BBOA9925I WAS z/OS OLA CICS PLT init ending.
+BBOA9940I WAS z/OS OLA CICS PLT init 2 start.

 In the Admin Console go back to your WOLA resource adapter under Resource Resource
Adapters. Click on the link that represents that WOLA resource adapter.

 Click on "J2C connection factories" and create a second connection factory so that you have
two CFs that look like this:

 Click on your new (alternate) connection factory link, then "Custom Properties." Update the
"RegisterName" property54 so it has the WOLA registration name from CICSY:

53 There's a bunch of messages in the CICSX held output we need to clear so the failover test (next) is easier to see.
54 This relieves the application from having to use setConnection(), and allows the high availability failover function

to work. Both connection factories will have RegisterName set.

© 2013, IBM Corporation 78

WBSR85 - WebSphere Application Server z/OS

 Click on your original (primary) connection factory ("ola" with JNDI name of "eis/ola"), and
then under "Additional Properties" click on "Custom Properties." Then update the
"registerName" property so it includes the WOLA registration name from CICSX:

 Go back one screen, then click on "Connection Pool Properties," then "Connection Pool
Custom Properties" for your primary eis/ola CF. Create three custom properties so the
properties under your primary connection factory looks like this:

Reminder: alternateResourceJNDIName provides the JNDI name of the alternate connection
factory

failureThreshold indicates how many getConnection() failures must be seen
before invoking the failover processing.

resourceAvailabilityTestRetryInterval indicates the polling interval WAS
uses to determine when the primary resource is back and available.

 Save and synchronize all changes.

 Stop and restart the z9sr01a server.

 In a 3270 session, clear the screen and issue command logon applid(CICSX). Clear the
screen again, then issue the following command as one long command:

BBOC START_SRVR RGN=CICSXREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01A

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y

 Clear the screen, then issue the command CESF LOGOFF.

 From the 3270 menu bar, select Communication Connect. Clear the screen and issue:

logon applid(CICSY)

clear the screen again and then issue the command:

BBOC START_SRVR RGN=CICSYREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01A

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y

 Back in your TSO session issue the MVS command:

F Z9SR01A,DISPLAY,ADAPTER,DAEMONRGES

You should see two registrations into the server:

BBOA0007I: SHOWING REGISTRATIONS FOR DAEMON GROUP:
BBOA0003I: Name Jobname SWT TL Min Max Act State
BBOA0004I: CICSXREG CICSX 000 00 0001 0010 0001 00
BBOA0004I: $WASDEFAULT$ CICSX 000 00 0000 0001 0000 00
BBOA0004I: CICSYREG CICSY 000 00 0001 0010 0004 00
BBOA0004I: $WASDEFAULT$ CICSY 000 00 0000 0001 0000 00
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,ADAPTER,DAEMONRGES

© 2013, IBM Corporation 79

WBSR85 - WebSphere Application Server z/OS

 You're almost ready to test the failover capability. One final thing remains: installing an
application that does not use setConnection() and rather relies on the RegisterName
property being set on the connection factory.

So, install the application /wasetc/was8lab/applications/ATSSample2.ear into the
z9sr01a server, resolving the resource reference to eis/ola and taking the defaults for
everything else.

 Start the ATSSample2 application.

 Point your browser at the following URL:

http://wg31.washington.ibm.com:10067/ATSSample2Web/

You should see:

 Put some data string in the first field, type in OLACB01 in the service name field and then click
the "RUN WAS->External address space test" button.

 Look in the CICSX region held output and search on the string WBSR8. You should see a
message indicating the request flowed over the primary connection factory and into CICSX55.

 From the MVS console, issue the command /C CICSX. This will kill the CICSX region and
make any getConnection() across the primary connection factory fail.

 On the browser use the "back button" and click the "Run" button again. You should see:

 This indicates a getConnection() failure across the primary connection factory56.

 Since failureThreshold is set to 1, that one failure is all that's needed to tell WAS to
failover. Use the browser back button, then invoke the service again. This time you should
see success at the browser.

 Look in the CICSY region held output and search on the string WBSR8. You should see the
message, indicating the request flowed over the alternate connection factory and into the
CICSY region.

 Use the browser to invoke the service multiple times into CICSY.

55 The string will look garbled ... that's because the Java program sent it in ASCII and no code-page conversion was done.
56 Which makes sense ... you just canceled that region. There's nobody there.

© 2013, IBM Corporation 80

WBSR85 - WebSphere Application Server z/OS

 Restart the CICSX region. Then open a 3270 screen, clear the screen, issue command
logon applid(CICSX). Clear the screen again, then issue the following command as one
long command:

BBOC START_SRVR RGN=CICSXREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01A

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y

 If you invoke the service again before the resourceAvailabilityRetryInterval=5
timer pops, you'll see the request flow over to CICSY. But if after that five seconds it'll revert
back to the primary and go into CICSX.

 End of Unit 6 Lab

© 2013, IBM Corporation 81

WBSR85 - WebSphere Application Server z/OS

Answers, Hints and Tips
Brief tutorial on 3270 and MVS usage

ISPF panel shortcuts

 =3.4 Data Set List Utility -- allows you to find and display data sets using the full name
of the data set or high level qualifiers as wildcards.

 =SDSF.DA The Display Active panel. Shows jobs and tasks that are currently active. See
"=SDSF, ST, DA and PREFIX" on page 83 for instructions on limiting what is
displayed.

 =SDSF.ST The Display Status panel. Shows jobs and tasks both active and completed. See
"=SDSF, ST, DA and PREFIX" on page 83 for instructions on limiting what is
displayed.

 =SDSF.LOG The MVS system console. Shows output and activity for the entire z/OS system.
See "Entering long commands" on page 82 for instructions on how to enter very
long commands into MVS.

 =SDSF.ENC The WLM enclave display panel.

Entering short commands

On the =SDSF.DA, =SDSF.ST or =SDSF.LOG panels you may enter short commands at the

"Command Input" field: A leading / is required.
Entering long commands

The "Command Input" field may not be long enough for some of the commands required by
this workshop.
A single slash (/) entered in the command input opens up the "command extension":

That field wraps and allows commands up to 126 characters. A leading slash is not needed.
The command extension remembers commands entered:

You may place your cursor on a previously entered command to retrieve it to the command
line. There you may enter it again or modify it and enter it again.

© 2013, IBM Corporation 82

WBSR85 - WebSphere Application Server z/OS

Scrolling up and down in browse and edit mode

 Scroll amount Look in the upper right of the screen. You should see one

 or

CSR = scroll to the location indicated by the placement of the cursor

PAGE = scroll one full page amount

You may change the scroll value by overtype the field.

 F7 Scroll up one scroll unit (CSR or PAGE)

 F8 Scroll down one scroll unit (CSR or PAGE)

 M + F7
 then F7 scrolls to the top

 M + F8
 then F8 scrolls to the bottom

=SDSF, ST, DA and PREFIX
The PREFIX function allows you to limit what is displayed with =SDSF.ST and =SDSF.DA
Syntax57: PREFIX <prefix_string_and_asterisk> then host enter (right Ctrl key)

Example: limits display to your Z9CELL regions.
Result:

An S next to JOBNAME will open up the held output for that job.
Searching for strings in job output

The command FIND may be used to search for output from the cursor location down.
If the string has no spaces, it may be entered like this:

But if there's a blank in the string being sought then enclose in single quotes:

If multiple instances of the string are present, F5 will find next.
If you wish to search from the cursor location up, then use the PREV keyword:

57 The shortcut PRE works as well. The asterisk may not be required depending on your system. Use of the asterisk is a
better practice to insure proper results until you understand the capabilities of your specific system.

© 2013, IBM Corporation 83

WBSR85 - WebSphere Application Server z/OS

Narrowing on a specific DD in held output
Placing a question mark (?) next to a job in =SDSF.DA or =SDSF.ST displays the individual
held DDs within the job. Then you may use S to see only that specific output:

System inventory answers
 Go under System Administration Nodes. Take inventory of what you see:

Node Name What type of node? Synchonization Status?

z9dmnode Deployment Manager
 Managed Node

 Green circle synchonized
 Red symbol not synchronized

z9nodea Deployment Manager
 Managed Node

 Green circle synchonized
 Red symbol not synchronized

 Go under System Servers Server Types WebSphere Application Servers. Take
inventory of what you see:

Server Name Which node? Synchonization Status?

z9sr01a Deployment Manager node
 Managed Node

 Green arrow started
 Red X not started

 Click on the link representing the server in the list and then Server Infrastructure Java and
Process Management Server instance. Take inventory:

Multiple Instances Enabled Yes No

Minimum Number of Instances 1 2 other: ________

Maximum Number of Instances 1 2 other: ________

 Go under Resources JDBC JDBC Providers. Is there anything there that suggests the
IBM DB2 JDBC driver is installed? You should see one JDBC resource provider, but it
won't mention DB2 in its name.

 Go under Resources Resource Adapters Resource adapters. Is there anything there
that suggests either the CICS JCA resource adapter or the WOLA resource adapter is
installed? You should see an empty list ... no resource adapters installed yet.

© 2013, IBM Corporation 84

WBSR85 - WebSphere Application Server z/OS

Configuration file system lab answers
Your picture should look like this:

WSADMIN SuperSnoop Installation Mini-Quiz Answers
Question Your Answer

Q1 What WSADMIN command object and
method is used to uninstall SuperSnoop if it
is found?

AdminApp.uninstall(application)
Where "application" is a variable that carries the
application name to be uninstalled.

Q2 After the application has been uninstalled,
what command object and method is used to
save the changes?

AdminConfig.save()

Q3 How many lines in the script are used to
construct the AdminApp.install() option
list?

There are four "appopts" lines. The first establishes
the variable appopts and seeds the first string into it,
the rest concatenate the previous with new input.

Q4 How many option parameters are in the
application installation options list?

Two: -appname and -MapModulesToServers.
The other values in that string are values that apply to
the two option parameters.

Q5 What's the purpose of the import sys line at
the top and the splitlines() used on
AdminApp.list()?

Import sys brings in a set of useful utility class
libraries. splitlines() serves to break the result
of AdminApp.list() into a list that can be parsed
as discrete units rather than one long string.

© 2013, IBM Corporation 85

WBSR85 - WebSphere Application Server z/OS

Example of Test Connection Failure when Scope=Node
If your JDBC provider and data source is scoped at the node level, the Test Connection attempts
to run from the Node Agent. But there's no servant region there so the attempt fails. The
message you receive is as follows:

Using the WS-FTP client
 On the desktop, locate the WS-FTP icon and click on it.

 It will bring up a "Session Properties" panel that is all filled out for this workshop. You simply
click "OK" to connect to your team's host system:

 You should then see:

The WS-FTP client has been preconfigured so it starts up with C:\WBSR8 as its workstation
home folder and /wasetc/was8lab as its host-side directory.

You can navigate up or down the folder or directory structure using the folder and "up-arrow"
symbols on either side. Or you may type the path in the fields at the top and press enter.

© 2013, IBM Corporation 86

WBSR85 - WebSphere Application Server z/OS

 To download a file, do the following:

1 - Select the file

2 - Select ASCII or Binary for the download conversion to take effect

3 - Click the left arrow to download

 To upload a file do the reverse of download -- select PC file, then select ASCII or Binary,
navigate to the desired target on the host side and then click the right arrow to upload.

 To view and update a workstation-side file, select the file on the left side of the WS-FTP panel
and click "View." This will open Notepad and display the file. Make whatever changes you
desire and save as usual.

 To view a host file select the file on the right side of the panel then select whether the file is to
be converted before displaying -- ASCII means the file will go through EBCDIC-to-ASCII
conversion before Notepad displays the file; Binary means the file is transferred to the PC and
displayed without conversion.

End of Document

© 2013, IBM Corporation 87

