
Unit 1a - Overview

Unit 1a - 1

© 2013 IBM Corporation
IBM Advanced Technical Skills

WBSR85
WebSphere Application Server z/OS V8.5

Unit 6 - WOLA

WebSphere Application Server V8.5 for z/OS

WBSR85
Unit 6 - WOLA

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 2

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
2

This page intentionally left blank

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 3

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
3

Overview of WebSphere Optimized Local Adapters

Registration …

WOLA is a means of communicating between WAS z/OS and external address spaces
by transferring message blocks between virtual memory locations:

Control
Region

Servant
Region(s)

App

WLM

CICS, IMS
or Batch

Prog

WOLA is this piece ...
● Built on function WAS z/OS has had since the
very early days

● Allows and coordinates this cross-memory
exchange

● Provides the higher-level interface to the
lower-level exchange

● Provides the infrastructure code for use with
CICS and IMS

WebSphere Optimized Local Adapters (WOLA) is a means of communicating between a WAS z/OS application
server and another address space using cross-memory transfer of message blocks.

The mechanism used has been in WAS z/OS since the beginning of the product. The designers of WAS z/OS
took advantage of a z/OS service to move messages between address spaces using cross-memory copy. WAS
z/OS uses this still -- any IIOP messages between servers in a cell on an LPAR makes use of this memory copy
function. WOLA is an externalization of this function so other products can use it to acess WAS z/OS.

WOLA supports CICS, IMS, batch programs, UNIX System Services processes and Airline Line Control (ALCS)
interaction.

The chief benefit of WOLA is that it's efficient and has very low inherent latency. The low latency is important
whenenver there is repetition. A one second latency for each of only 10 invocations can be endured; a one
second latency suffered a million times adds up.

For WOLA to work there's a bit of infrastructure support that's needed in the WAS z/OS side and the CICS, IMS or
batch program side. In this unit we'll look at CICS and batch programs, and in so doing we'll cover the key points
of WOLA that will allow you to see how it works and how it can be of value to you.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 4

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
4

Registration

Outbound vs. Inbound …

An important key concept is "registration" ... the construction of the cross-memory
linkage into the WAS z/OS application server:

Control

Region

Servant
Region(s)

App

WLM

CICS, IMS
or Batch

Prog

Registration is really a set of control blocks that permits and
controls the specific cross-memory exchanges

The outside address space always registers into the WAS z/OS
server, never the other way around

The interaction between CR and SR is the same as for any form of
input

Any given WAS z/OS server may have multiple registrations into it

Registration is accomplished in several ways:
● A supplied CICS control transaction
● The BBOA1REG API

Serves as the cross-memory
"pipe" over which exchanges occur

"Registration" is a key starting concept we need to get into the discussion. Before any WOLA communications
can take place between WAS z/OS and an address space such as CICS, IMS or Batch, a WOLA "registration"
must be established. The "registration" is the cross-memory path over which the exchanges take place.

In reality registration really involves the construction of a set of control blocks that define the settings for the WOLA
exchange. When an outside address space registers into a WAS z/OS server, WAS creates these control blocks
above the 2GB bar.

Key Point: the outside address space always initiates the registration. It's always the outside address space that
"registers into" the WAS z/OS server.

Multiple registrations are permitted, so a given WAS z/OS server may communicate to multiple outside address
spaces.

There are two ways this registration takes place -- with a supplied CICS control transaction ("BBOC") or with the
BBOA1REG native API. We'll discuss both of those in this unit.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 5

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
5

"Outbound" and "Inbound"

WOLA Information …

WOLA is bi-directional. The key to "outbound" vs. "inbound" is thinking about who
initiates the conversation ... or, what program invokes the other program.

App

WOLA JCA
Resource
Adapter

WAS z/OS AppServer CICS, IMS or Batch

Prog

WOLA
Support

Java program invokes "outbound"

Uses supplied JCA resource adapter

Implementation in external A/S depends
on system - CICS, IMS or Batch

Outbound

App

WAS z/OS AppServer CICS, IMS or Batch

Prog

WOLA
Support

COBOL, C/C++, Assembler or PL/I

Uses WOLA APIs

Invokes "inbound" to WAS EJB

To target EJB it looks like IIOP

Inbound

WOLA
APIs

The best way to start the conversation about WOLA is to establish the concept of the direction of invocation ...
"outbound" from WAS to the external address space, or "inbound" from the external address space into WAS.

This is really a story of who initiates the conversation ... or who invokes who.

In the outbound model, the Java program in WAS z/OS initiates by invoking outbound to the target program in
either CICS, IMS or Batch. In this case the Java program in WAS z/OS makes use of a supplied JCA resource
adapter. So to the Java program WOLA looks very much like any JCA resource adapter, such as CTG. The
WOLA JCA resource adapter uses the same "common client architecture" (CCI) as CTG, but there getter and
setter methods for WOLA are slightly different. So while very similar, it's not identical to CTG for Java programs.

When going outbound the external address space has to have some knowledge of WOLA and how to handle the
calls coming over. How this is implemented is different depending on whether it's CICS, IMS or Batch. In this
workshop we're going to focus on CICS as the target for outbound calls. In that case the "WOLA Support" box in
the picture above becomes a set of CICS functions supplied by WAS that get installed into the CICS region. We'll
cover in some detail what those things are.

Note: the response to an outbound call simply flows back across the WOLA connection. The concept of
"outbound" and "inbound" focuses on who starts the conversation ... the response flows back as it would with any
conversational connection.

The reverse of "outbound" is "inbound" ... the program outside of WAS seeks to reach into WAS z/OS and invoke
a target EJB. In this case the outside program, written in either COBOL, C/C++, High Level Assembler or PL/I,
makes use of the supplied WOLA APIs to communicate inbound. The WOLA JCA Resource Adapter is not used
for inbound calls ... the inbound calls are handled by built-in WOLA support provided with WAS z/OS. The target
EJB has a few WOLA-specific requirements, but in general it's simply a stateless EJB that sees an IIOP call come
to it.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 6

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
6

Source of Information on WOLA

Outbound to CICS …

In addition to the InfoCenter, which has many valuable reference articles, the WP101490
Techdoc is ATS's central location for WOLA-related documentation

cdat_olaInfoCenter

WP101490TechDocs

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Introduction to WOLA

History of Updates to WOLA

Native API Primer

YouTube Video URL PDF

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

WOLA is a functionally rich
feature of WAS z/OS

In this Unit we'll cover the
essential framework

In the hands-on lab you'll use
WOLA with CICS and Batch

Quick Start Guide

WOLA is a fairly broad topic encompassing a fair deal of concepts as well as lower-level details. In the relatively
short time we have for this unit we can't adequately cover it all. But we can give you the key concepts and point
you to the sources of detailed information for the function.

The product Information Center (InfoCenter) is a key resource for reference and configuration information. There
are many articles on WOLA. The "starting point" is the one we show on the chart above. The easiest way to
search and find a specific topic is to search on the keyword string for the article file name.

The Techdoc WP101490 serves as our central repository for all things WOLA. It has many documents contained
within it. A few of the documents are shown on the chart above.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 7

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
7

Outbound to CICS
Using the Supplied CICS Link Server Task

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 8

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
8

The WOLA Infrastructure Components for CICS

Enabling in CICS …

WAS z/OS supplies a few key components that install into a CICS region so it may use
WOLA to communicate with WAS z/OS:

BBO$
Link Server Task

BBO#
Invocation Task

BBOC
Utility Tran

Target CICS
Program

CICS Region

Application Server

TRUE
Task Related User Exit

WAS z/OS
Control
Region

Servant
Region(s)

Application

3270

1

Direct Program Link (DPL)

2 3

4

1. CICS Task Related User Exit (TRUE)
This provides the essential low-level connectivity to WAS using the cross-memory
services provided by WOLA.

2. BBO$ Link Server Task
Serves as receiver of WOLA calls from WAS into the CICS region

3. BBO# Invocation Task
Performs the DPL to the named CICS program. Plays a role in security (more in a bit)

4. BBOC Control Transaction
A 3270 application useful for things such as starting the link server task

WOLA

For WOLA to work with CICS there needs to be a few pieces of WOLA infrastructure installed and enabled in the
CICS region. The chart above illustrates the architecture. The numbered blocks in the picture correspond to the
notes here:

1. The lowest-level support in CICS for WOLA is a supplied "Task Related User Task," or TRUE. The TRUE
architecture has been a part of CICS for many years. The designers of WOLA wanted to make use of existing
CICS architectural support so they implemented this low-level support as a TRUE.

2. For calls flowing outbound from WAS into the CICS region the BBO$ Link Server Task handles the calls and
begins the process of invoking the named CICS program.

Note: it is possible to make use of WOLA and not employ the BBO$ Link Server task. But that implies (a)
taking on more of the programming burden yourself, and (b) losing some transaction and security benefits.
The next chart highlights those points.

3. The BBO# Link Invocation Task is called by the BBO$ Server task. The invocation task is what performs the
DPL to the named CICS program. The reason this function is separate from the server task is because when
the user ID on the WAS thread is asserted into CICS there will result a separate instance of the invocation
task. Each instance carries the ID asserted into CICS from WAS. The DPL of the named CICS program is
made under the identity of the asserted ID. However, if you choose to not assert the user ID into CICS then
only one invocation task may be used.

4. The BBOC control transaction is a 3270 program that allows you the ability to control elements of the WOLA
infrastructure such as starting and stopping the Link Server Task, or starting and stopping the TRUE itself.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 9

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
9

Enabling WOLA in CICS Region

Enable WOLA in WAS …

The following diagram summarizes the steps. The InfoCenter article has details:

tdat_enableconnectorcicsInfoCenter

/wasv8config/z9cell/z9nodea/AppServer/profiles/default/bin/copyZOS.sh

copyZOS.sh OLASAMPS 'USER1.WAS8.WOLA.SAMPLES'

copyZOS.sh OLAMODS 'USER1.WAS8.WOLA.LOADLIB'

CSDUPDAT
Updates the CICS CSD with the WOLA programs, transactions and screen maps

DFHPLTOL
Adds program to PLT to initialize WOLA TRUE at CICS startup

USER1.WAS8.WOLA.SAMPLES

FB 80

USER1.WAS8.WOLA.LOADLIB

LIBRARY

CICS start procedure

//DFHRPL DD DSN=&CICSDS..SDFHLOAD,DISP=SHR

// DD DSN=SYSS.CICS.LOADLIB,DISP=SHR

 :

// DD DSN=USER1.WAS8.WOLA.LOADLIB

The tasks needed to enable WOLA in a CICS region are relatively simple for the CICS system programmer.

WAS z/OS ships in its UNIX file system a set of WOLA sample jobs and a set of WOLA modules. Further, WAS
z/OS provides a shell script utility that will copy those file system files out to MVS data sets. That shell script is
called copyZOS.sh and is found in the /bin directory. The shell script assumes the target MVS data sets are
pre-allocated (help for allocation parameters is provided if you invoke the shell script with a -? switch). Then the
shell script may be used to copy the files from the USS file system to the MVS data set.

Once copied, there are two sample jobs that will update CICS:

● CSDUPDAT - this will update the CICS CSD with information about the WOLA programs, transactions and
screen maps. This is required for WOLA to work.

● Note: the JCL that wrappers the commands that update the CSD need to be customized for your particular
installation.

● DFHPLTOL -- this is optional. It adds a program to the CICS PLT (program load table) so the WOLA TRUE is
started automatically when the CICS region is started. You may start the TRUE using a BBOC command if
you would rather not have it started automatically.

The other copyZOS.sh function copies the WOLA modules out to a LIBRARY data set. This is then
concatenated on the CICS start procedure DFHRPL DD statement to provide CICS access to those modules.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 10

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
10

Enabling WOLA in WAS z/OS

Starting Link Server Task …

Just a few relatively easy steps to begin using WOLA from an application server:

tdat_enableconnectorInfoCenter

● Grant CICS ID READ, or

● Make profile UACC READ
CB.BIND.Z9*

WAS z/OS SAF Profile

WAS_DAEMON_ONLY_enable_adapter = 1

ola_cicsuser_identity_propagate = 1

Two scope=cell environment variables

cdat_olacustpropInfoCenter

Will require a restart of
the entire WAS cell to
pick up these changes

RAR

ola.rar
Found in the /installableApps directory

CF
Simple connection factory ... no native library
path, no custom properties to start with

The installation of this RAR file
is like any JCA RAR file

Enabling WOLA in the WAS z/OS runtime environment is relatively simple. Three basic steps are needed:

1. Two cell-level environment variables are involved -- one turns on a switch that enables the WAS z/OS
Daemon server to recognize it must begin providing WOLA coordination services, and the other provides the
ability to propagate CICS identity into WAS when the flow is "inbound" to CICS. The first is required; the
second optional depending on what you are planning to do. Because the first variable involves the Daemon
server, it requires the restart of the entire WAS cell (on that LPAR).

2. WOLA comes with a JCA resource adapter much like the CICS Transaction Gateway resource adapter. The
WOLA RAR file installs very much like any RAR file installs. The definition of a connection factory is what
provides applications the path to access WOLA. We'll see how Java applications in WAS z/OS make use of
this JCA resource adapter to access WOLA in an upcoming chart.

3. The final piece is a potential update to a WAS z/OS RACF profile. To understand why this is necessary you
first must understand that a key activity in using WOLA is something called "registration." That activity
involves the external address space "binding" to the control region of the named application server. It would
not be good to allow anything to bind ... some security mechanism is needed. And for WAS z/OS that
security mechanism is the CBIND profile ... specifically, the CB.BIND profile. For an external address space
to successfully register into a WAS server, the identity of that MVS address space must have READ access
to the CBIND profile. There are two ways to providet this -- grant the ID specific READ access, or make the
profile itself "Universal Access" (UACC) of READ.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 11

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
11

Starting the WOLA Link Server Task in CICS

Java application considerations …

This performs two roles -- it initates the registration into the WAS server, and it prepares
the Link Server to accept requests from the application in WAS:

rdat_cicsInfoCenter

BBOC START_SRVR RGN=CICSXREG DGN=Z9CELL NDN=Z9NODEA SVN=Z9SR01

SVC=* MNC=1 MXC=10 TXN=N SEC=N REU=Y

BBOC
Utility Tran

3270

Register Name Cell SHORT Node SHORT Server SHORT

Accept any
service name

Operation

Minimum
Connections

Maximum
Connections

Propagate
Transaction?

Propagate
Security?

Reuse BBO#?

TRUE BBO$ BBO#
CICS

Program

Application

WAS Server CICS Region

1 2

3

4

5 6 7

8

See notes for explanation of numbered blocks

With WOLA enabled in the CICS region and the WAS environment, the BBO$ Link Server task may be started in
the CICS region to prepare for WOLA calls coming over from WAS.

Note: this assumes the TRUE is started. That may be done automatically with the update to the PLT as
performed by the sample job DFHPLTOL, or with the BBOC START_TRUE command.

The starting of the Link Server task performs the all-important act of "registering" into the named WAS z/OS
application server. The registration carries a name, which is important because the application on the WAS side
needs to specify which registration to talk over. It is possible to have multiple registrations into a given WAS z/OS
server, so being able to specify which to use is necessary.

The syntax of the command is shown on the chart, with a pointer to the rdat_cics InfoCenter page that provides
more detail. Note that you must specify the cell, node and server short names so the registration has the needed
detail to register into the named application server.

The numbered blocks in the chart correspond to the following notes:

1. The TRUE is started with the PLT update or manually with BBOC START_TRUE.

2. The BBO$ link server task is started

3. The registration into the named WAS application server is made

4. The application uses the installed WOLA resource adapter and defined connection factory to access the
WOLA mechanism. The application names the registration to use and the service to invoke. The service is
the CICS program to invoke.

5. The request flows into the BBO$ link server task

6. BBO$ creates an instance of the BBO# invocation task

7. The BBO# invocation task performs a direct program link of the named service

8. The response flows back to the WAS application

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 12

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
12

Java Application Considerations

RA failover …

For outbound use of WOLA to CICS using the Link Server Task the following
considerations come into play:

tdat_connect2wasapp, tdat_useoutboundconnectionInfoCenter

Application
Servlet or EJB

ola.rar
CF JNDI = eis/ola

Context ctx = new InitialContext();

ConnectionFactory cf

= ctx.lookup("java:comp/env/eis/ola");

ConnectionSpecImpl csi = new ConnectionSpecImpl();

csi.setRegisterName ("CICSXREG");

Connection con = cf.getConnection(csi);

Interaction int = con.createInteraction();

InteractionSpecImpl isi = new InteractionSpecImpl();

isi.setServiceName("MYPROG1");

int.execute(isi, data);

TRUE

MYPROG1
CICS Program

BBO$/BBO#

Registration

CICSXREG

1

2

3

4

Either COMMAREA or CICS channel
and container. If channel and

container, see InfoCenter rdat_cics

On the WAS z/OS side of this will be a Java application that wishes to call to CICS over the WOLA pipe. That
Java application may be in the form of a servlet or EJB. The application is largely shielded from WOLA by the
JCA resource adapter that's used to access the lower-level WOLA function. But there are WOLA specific values
that must be supplied to the Common Client Interface (CCI) methods implemented in the JCA.

Imagine a setup like what's shown in the chart -- WAS z/OS using WOLA to communicate with a CICS region.
The enablement activities are set in both WAS and CICS. The TRUE is started in CICS and the registration into
WAS has been successfully performed with the BBOC START_SRVR command. The CICS program that will be
invoked is MYPROG1.

There are two key Java activities -- one is using the ConnectionSpeclmpl() method to name the registration to
communicate over, and the second is using the InteractionSpecImpl() method to name the CICS program
to invoke.

1. The application first does a JNDI lookup of the connection factory. The sample above shows that value as
hard-coded but it can be symbolically referenced and resolved at time of deployment.

2. A connection spec implementation object is created and the registration name is set. This value must match
that of a valid registration made into the WAS server by the CICS region.

3. A connection object is created

4. An interaction spec implementation object is created, the service name (which is the target CICS program to
invoke) is set and the interaction spec is invoked with the data passed.

WOLA itself does not care about the layout of the data ... to WOLA it's just a chunk of memory to be copied. But
of course CICS and the CICS program cares, so the layout of that data is important. When using the link server
task that data may be in the form of a COMMAREA or a container within a channel. There exists tooling support
in IBM Rational Application Developer (RAD) to import a COPYBOOK so the data layout created adheres to the
intended target.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 13

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
13

Using Resource Failover with WOLA Outbound to CICS

Round-robin …

In many ways this is just like what we saw with resource failover earlier. But there's a
few important things to note about making this work properly:

CICSXCICSX

Registration

CICSXREG

CICSYCICSY

Registration

CICSYREG

Application
Servlet or EJB

ola.rar

CF eis/ola

CF eis/ola-alt

JNDI

Set the RegisterName as a
custom property of the CF,
not in the application
program as we saw earlier

alternateResourceJNDIName = eis/ola-alt

failureThreshold = n attempts

resourceAvailabilityTestRetryInterval = n secs

failureNotificationActionCode = 1, 2 or 3

Connection Pool Custom Properties

Failover custom properties same as we saw for JDBC
and JCA resource connections
Same properties, settings and behavior

The registration into the WAS server must exist
ahead of time
Registration is always performed from external space into WAS. For CICS and
WOLA, start Link Server in each CICS region ahead of usage

Set RegisterName custom property on each CF to
name the registration to communicate over
Permits different registration names to be used transparent to application

Back in the JNDI and CICS sections we saw a new feature for WAS V8 having to do with resource failover and
failback. Given that WOLA uses a JCA resource adapter for outbound calls, does that mean it too may participate
in this resource failover function? The answer is "yes."

Just as with JDBC and CICS, multiple connection factories need to be defined -- one to serve as the primary and
another to serve as the alternate. The same connection pool custom properties apply as did for JDBC and JCA,
and the same behavior applies to each custom property.

But there are three things we wish to highlight:

● The WOLA registrations must be established and in place for both the primary and the alternate. Registration
is always initiated from the external address space into the WAS z/OS server. WAS itself can't initiate a
registration to a CICS region. So for this failover to work the alternate registration pipe must be in place and
ready to go.

● The registration name must be specified as a custom property on the connection factory, not within the
application as we showed on the earlier chart. When the registration name is specified as a custom property
on the CF the application no longer has to use the ConnectionSpecImpl object to name the registration. Then
when a failover from the primary connection pool to the alternate connection pool is needed, that failover may
be transparent to the application. The failover occurs and the registration name on the custom property is
used to flow the failover requests across the alternate registration.

Why would you use this? For CICS in particular the most obvious use-case is when the CICS region you're
connecting to is a CICS Gateway Region. This protects against the loss of the primary gateway region while still
permitting gateway access to application owning regions in elsewhere on the LPAR or in the Sysplex.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 14

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
14

V8.0.0.1 and WOLA Round-Robin

TX, Security summary …

The 8.0.0.1 fixpack brought new WOLA function, including ability to round-robin
between multiple CICS regions registered into the server with the same name:

ola_locate_service_search_algorithm
1

2

The last external address
space to register in gets work

Round-robin across like-
named registrations

Environment Variable

WOLA Registration
Name = AAA

WOLA Registration
Name = AAA

Application

Common Client Interface OLA
RAR

WebSphere Application
Server z/OS V8.0.0.1

CICS Region

Target
Service

For calls outbound from WAS to external address space

Registration names must be identical

Targeted service must be present in address spaces
participating in the work distribution

CICS Region

Target
Service

Any supported external
address space, not just CICS

The WAS z/OS V8.0.0.1 fixpack also brought a round-robin function so two CICS regions registered in using the
same registration name (yes, that is possible) may receive work coming from an application in WAS.

This is controlled by an environment variable (not a custom property on the connection pool or CF). A value of "1"
means WAS is to honor the last registration into the WAS server, a value of "2" means to round-robin across the
two like-named registrations.

Note: unlike with failover, this involves a single connection factory. And it's not necessary to code the registration
name as a custom property on the CF. To the application it's as if there's one registration and one target CICS
region. WAS knows better. It sees the two registrations and will round-robin across the two if you indicate that
behavior with this new environment variable.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 15

This chart summarizes the transaction and security support provided by WOLA based on whether the call is
outbound or inbound.

For outbound using the Link Server Task in the CICS region global transaction propagation is supported as well as
propagation of the security identity on the WAS execution thread.

Note: the registration into the WAS server must indicate TXN=YES and SEC=YES for propagation to work.

If, however, you wish to bypass the use of the Link Server Task and code your CICS program to use the WOLA
APIs directly, you lose both TXN and SEC propagation. Depending on your program requirements, it may be okay
to run under the identity of the CICS region with transaction commit upon return.

Note: bypassing the Link Server Task for outbound calls to CICS is something one does when (a) the TXN and
SEC requirements don't call for propagation, and (b) you are seeking the very best efficiency and throughput. The
Link Server Task is very useful in that it shields your programs from WOLA knowledge, it supports TXN and SEC,
and it makes using WOLA easier. But that comes with a degree of processing overhead. By coding directly to the
APIs you may squeeze as much efficiency out of WOLA as possible for very high volume processing.

For inbound calls to WAS z/OS -- something we've not yet covered -- use of the WOLA APIs is required and
propagation of security and transaction is possible. Again, the registration flags need to specify TXN=Y and
SEC=Y for that aspect to funtion properly.

Let's take a closer look at the inbound support.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 16

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
16

Inbound to WAS from CICS?

Batch …

It is possible to have a program in CICS invoke a Java service in WAS z/OS using
WOLA. It implies the use of the WOLA native APIs:

TRUE

CICS
Program

WOLA
APIs

CICS Region

WAS Server

Application
Stateless EJB

The TRUE is still needed
Always needed in CICS because it provides the fundamental WOLA function

Link Server Task not used
Link Server task is for outbound WAS-to-CICS, not inbound to WAS

Registration into WAS server must be present
Accomplish with BBOC REGISTER or BBOA1REG native API

CICS program must use WOLA APIs
Note the concept of a "bridge" program that shields other CICS programs from
having to understand the APIs. We'll explore those APIs next

The ola.rar adapter not used
That's for outbound calls ... general WOLA support used for inbound calls

Target must be stateless EJB
And it must implement using the supplied WOLA class files

Registration

This is just like what an external batch
program would use. We'll explore

inbound from batch next ... keep in mind
same lessons apply to inbound from CICS

Other CICS
Programs

WOLA is a bi-directional technology, supporting calls from WAS into CICS (outbound) as well as calls from CICS
into WAS (inbound). Up to this point we've focused on the outbound model because that's one most think of when
they think of WAS and CICS interacting with one another. But what about CICS into WAS invocation?

The keys to this are shown on the chart:

● The TRUE is needed to provide the low-level connectivity to use WOLA. The TRUE needs to be active at the
time the program in CICS wishes to use WOLA.

● The BBO$ and BBO# link server task function is not used. That supports outbound calls that flow from WAS
into CICS, but for the reverse -- CICS into WAS -- it is not used.

● The registration into the specific WAS server must be created. There are two ways this may be
accomplished: using the BBOA1REG API in the program (more on this in the next section of this unit), or
using the BBOC REGISTER command.

● The program in CICS must use the WOLA native APIs to interact with the application in WAS.

● Note: this does not mean every program in CICS must be changed. This means that at least one program
needs to write to the WOLA APIs. Other CICS programs may DPL to the WOLA-enabled program for access
to the WOLA function.

● The JCA adapter in WAS is not used. It may be present, but it's not required for inbound calls from CICS into
WAS.

● Finally, the target of the inbound call must be a stateless EJB that makes use of the supplied WOLA class
libraries for its home and remote interfaces. We'll see more detail about that coming up.

Rather than go into the details of the APIs for this inbound-from-CICS model we'll turn our attention now to batch
programs using WOLA to reach into WAS and invoke EJBs. The model is the same as inbound from CICS with
respect to the APIs and the programming requirements in WAS.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 17

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
17

Inbound from Batch
Using the native APIs of WOLA

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 18

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
18

Essentials of Batch Program Use of WOLA

API InfoCenter …

Relatively simple setup, but there is a bit more exposure to the programming interfaces
of WOLA:

Batch Program
COBOL, C/C++,

High Level Assembler, PL/I

WOLA Native Modules
copyZOS.sh, specify OLAMODS

Job Control Language (JCL)
STEPLIB DD DSN=hlq.OLAMODS

INPUT DD DSN=hlq.dataset

OUTPUT DD DSN=hlq.dataset

BBOA1REG

BBOA1INV

BBOA1URG

WOLA APIs within batch
program structure

Eclipse Tooling
i.e. IBM Rational Application Developer

ola_apis.jar

../util/zos/OLASamples/lib

cdat_olaapis, tdat_useola_in_step2InfoCenter

Home Interface

Remote Interface

Application
Stateless EJB

execute()
input: byte array

output: byte array

Other
Applications

This WOLA-aware EJB becomes
a "bridge" to other EJBs unaware

that WOLA is in the picture

1

2

3

54

WAS EJB

Processing inbound to WAS z/OS from a batch program is a natural fit for WOLA -- batch programs by their
nature perform repetitive operations on data records. Highly-efficient means of access inbound to WAS z/OS
Java applications are limited. WOLA fits that bill nicely.

The chart above highlights the key requirements for doing this:

1. The batch program must use the WOLA native APIs to perform the WOLA calls into WAS. That means the
JCL used to run the batch program must provide the program access to the native API module library. That
module library is created using the copyZOS.sh shell script. The modules are copied out of the USS file
system and into a pre-allocated LIBRARY data set. From there the batch program may STEPLIB to them.

2. The target application that will run in WAS z/OS must be developed and use the class library supplied in the
ola_apis.jar file.

3. The target application must be a stateless EJB that implements the method execute() and takes as input
a byte array and passes as output a byte array. The home and remote interfaces must be implemented
using the classes found in the ola_apis.jar file. The application is then packaged and deployed into
WAS as would be the case with any application.

4. As noted earlier, registration is always performed from the outside address space into the named WAS
server. That's true for batch programs using WOLA as well. The BBOA1REG API (or BBGA1REG for 64-bit
calls) is used to perform the registration. We'll look at the APIs in a bit more detail in the upcoming charts.
For now the key is understanding that (a) registration must take place, and (b) the batch program does this
using the register API. Then the batch program invokes the target application using the JNDI name of the
deployed EJB as the "service" called by the WOLA invoke.

5. The EJB that serves as the target for the WOLA call may then turn and drive other EJBs in the the runtime.
This is how you might use inbound WOLA to an ISV application where the ISV has not implemented WOLA
classes in its program -- you write a small "bridge" (or "shim") program which receives the WOLA call, then it
turns and drives the ISV application using the local interface.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 19

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
19

The WOLA Native APIs InfoCenter Article

Simplest use …

An incredibly useful InfoCenter article that details all 13 of the native APIs, including
parameters and return code / reason code descriptions

cdat_olaapisInfoCenter

13 APIs plus an internal
link to JCA adapter APIs

APIs that start with BBO*
are 31-bit callable; BBG*

are 64-bit callable

Parameter map (with full descriptions following)

Return Code / Reason Code descriptions for each API

A wonderful reference article, but it doesn't
highlight how easy using the APIs can be ...

The InfoCenter has an excellent reference article on the APIs located at keyword search cdat_olaapis. It
provides a listing of all the APIs and provides a description of each as well as a parameter map and the return
code and reason codes each may throw when operating.

Note: new with WAS V8 are 64-bit callable APIs for C/C++ programs. They carry the prefix BBG* rather than
BBO*. APIs with BBO* are 31-bit callable APIs.

This InfoCenter article is the reference for APIs specifics, but it doesn't highlight how easy the APIs are to use.
For example, as few as three APIs are needed to produce an inbound call program. 13 APIs are listed, but not all
13 are needed, depending on what you plan to do. So over the next few charts we'll explore how the APIs
organize themselves into categories that make understanding their use a bit easier.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 20

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
20

The Simplest Inbound Use of Native APIs

Assumptions …

There are 13 APIs, but that doesn't mean you have to use all 13 ...

BBOA1REG

BBOA1URG

BBOA1CNG

BBOA1CNR

BBOA1SRQ

BBOA1SRP

BBOA1SRX

BBOA1RCA

BBOA1RCS

BBOA1RCL

BBOA1GET

BBOA1INV

BBOA1SRV

13 APIs as listed in
the InfoCenter article

BBOA1INV
Invokes the named target EJB, passes
in input data and receives back results

BBOA1URG
Unregisters from the WAS z/OS

application server

End

BBOA1REG
Registers into the WAS z/OS

application server

Start

More?

What are other
APIs used for?

This is the simplest example of an inbound batch program invoking a target EJB in WAS z/OS. Of the 13 APIs
listed in the InfoCenter article, only three are needed -- BBOA1REG, BBOA1INV and BBOA1URG.

Put a loop around BBOA1INV and you have an operation that may be repeated for as many times as the data
records require. When you're done invoking the EJB you drop through to BBOA1URG to tear down the
registration and exit the batch program.

This simplicity is made possible by the function of BBOA1INV making some assumptions about how it will operate.
Let's explore those assumptions because they help us understand why there are 13 APIs. It has to do with how
much control you wish to exercise in your program.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 21

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
21

BBOA1INV Makes Some Assumptions

APIs categorized …

To keep the BBOA1INV API simple to understand and simple to use, it makes some
assumptions. Explaining this will begin to surface why the other APIs exist ...

BBOA1INV
Invokes the named target EJB, passes
in input data and receives back results

Home Interface

Remote Interface

Application
Stateless EJB

execute()
input: byte array

output: byte array

Assumptions Made ...

● Program control held until WAS reponds
In other words, it operates synchronously ... invoke, wait for response, process response

● Connections returned to pool each time
Which implies a little bit of extra overhead to get the connection each time

● The maximum response length is predictable
You set the maximum response length as an input parameter on the API
If response back is unpredictable it means you'll need more granular control

This suggests WOLA provides "basic" APIs and "advanced" APIs

To keep the use of BBOA1INV relatively simple the designers of WOLA chose to include some assumptions about
programming behavior. Specifically:

● BBOA1INV operates synchronously ... that means when the batch program calls the API and the request flows
over the WAS, program control is held from the batch program until WAS returns with the response. This
makes things easier because your batch program does not need to check if a response is back -- you just
invoke and when program control is returned you know a response is received. But, as you can well imagine,
depending on how long it takes for the response to come back this may introduce a great deal of wait time in
your batch program. This is why the other APIs permit operations to be asynchronous -- program control is
returned immediately. Your batch program may then do other work. But you must then come back
periodically to see if a response is back.

● Any given registration contains a pool of connections. How many is determined by parameters on the
BBOA1REG API. BBOA1INV assumes that for each request a connection is retrieved from the pool, used, and
returned. However, connections can be re-used, saving a little bit of processing each time. BBOA1INV does
not re-use connections ... which is another reason why it's simple to use. It assumes each call of BBOA1INV
implies getting a connection, using it, then returning it to the pool.

● Finally, BBOA1INV assumes that the maximum length of the response to come back is predictable. That is,
you can predict with high certainty that the length will not exceed the value you specify as a parameter on the
BBOA1INV API for return length. The other APIs provide a means of determining programmatically how long
the response is, but BBOA1INV allows for maximum length and it processes that maximum length.

Our reason for highlighting these assumptions is to set the stage for the introduction of the other APIs and to begin
to categorize the APIs around "basic" and "advanced," "inbound" and "outbound."

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 22

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
22

13 APIs Categorized

Real example …

The organize around inbound, outbound, basic and advanced:

BBOA1REG

BBOA1URG

BBOA1CNG

BBOA1CNR

BBOA1SRQ

BBOA1SRP

BBOA1SRX

BBOA1RCA

BBOA1RCS

BBOA1RCL

BBOA1GET

BBOA1INV

BBOA1SRV

BBOA1CNG
Get connection

BBOA1SRQ
Send request

BBOA1GET
Get response

BBOA1CNR
Release connection

BBOA1RCL
Response length

Inbound Advanced

BBOA1INV
Invoke EJB

Inbound Basic

BBOA1RCA
Receive any

BBOA1RCS
Receive specific

BBOA1GET
Get response

BBOA1CNG
Get connection

BBOA1CNR
Release connection

BBOA1SRX
Send exception

Outbound Advanced

BBOA1REG
Registers

BBOA1URG
Unregisters

Common

BBOA1SRV
Host service

BBOA1SRP
Send response

BBOA1CNR
Release connection

Outbound Basic

Some APIs appear in
multiple categories

cdat_olaapisInfoCenter

Here are the 13 APIs provided by WOLA categorized -- inbound vs. outbound, basic vs. advanced.

Note: we're not showing the 64-bit BBG* APIs here. They have the exact same function as the 31-bit BBO* APIs.

● Common - The register and unregister APIs are grouped under a "common" category because they apply in all
cases.

● Inbound Basic -- only one API, BBOA1INV, and we just discussed the simplicity of this one API along with the
assumptions made to provide that simplicity.

● Inbound Advanced -- these APIs introduce the notion of greater control over connection management and
asynchronous operations. For example, BBOA1CNG is used to get a connection from the pool, BBOA1CNR is
used to turn the connection back to the pool. You may re-use a connection multiple times if you wish, saving a
little bit of processing through re-use. BBOA1SRQ is used to send a request, and it has a flag to be used
asynchronously. If you run asynchronously, then you have to use either BBOA1GET or BBOA1RCL to see if a
message has returned on the specific connection and pull it back.

● Outbound Basic -- calling outbound from WAS to a batch program requires pausing and thinking about what's
required before the outbound call is made from WAS. The batch program would need to be started and
registered into the WAS server, and the batch program would need to be a "listen" state. That's what the
BBOA1SRV API does -- it "hosts a service." That service will sit in a wait state until invoked by the call from
WAS. Then your program would use the BBOA1SRP to "send a response" back to WAS. These "basic" APIs
operate synchronously, so like BBOA1INV they're relatively simple by virtue of the assumptions they make.

● Outbound Advanced -- these introduce the idea of asynchronous operations, specific connection
management, and receiving calls for a specific service or any named service. Outbound advanced gets a little
trickier to comprehend until you use the APIs in practice. The WP101490 API Primer covers the outbound
advanced in a step-by-step manner.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 23

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
23

Network
Carries web service
calls to distributed

tax package

A Real-Life Example of Inbound Batch Processing

Primer …

This involves a COBOL batch program that invokes a vendor tax calculation application
running on distributed WAS and accessed with web services:

Vendor Tax
Calculation

Package

WAS on Distributed

WOLA
Bridge
to WAS

WAS z/OS

WOLA EJB Calls
Tax Web Service

Advanced inbound APIs with asynchronous control
Asynchronous because COBOL is single-threaded and web service call to external tax package is the
slowest link. Asynchronous APIs allows COBOL to get program control immediately.

150 connections kept loaded with work and busy
Maximum connections over WOLA to EJB. All 150 loaded up with work requests. COBOL then loops
through array to see if response received. If so, then process back results and load that connection
with another request. Connections kept fully busy in this manner.

Multi-threaded Java then parallelized web service calls
WAS z/OS and WAS distributed are multi-threaded. Given sufficient processing capacity, the work
requests from COBOL may then be handled in a parallel execution fashion.

Linked COBOL
programs

Existing
Billing
Batch

Process

In-house Tax
Calculation

Module

Customer Billing Records
1,000,000+ with fixed
completion window

1

2

3

4

Vendor Tax
Calculation

Package

WAS on Distributed

5

What's represented here is a real-life use of WOLA. The numbered blocks correspond to the following notes:

1. The existing batch process involved millions of customer billing records that needed to have tax calculated
and applied. An in-house tax calculation module was linked to the batch program processing the billing
records. The process has a requirement to complete within a certain time window.

2. Maintaining accurate tax calculation rules is a complicated process. Tax rates are based on many factors
related to locality and calendar. Rather than trying to maintain an in-house rules engine, a vendor tax solution
package was mandated. This vendor solution was implemented as a Java EE application, but certified to run
only on distributed WAS. It had a web services interface.

Challenge: how to leverage existing billing batch process to utilize vendor tax package residing off-board with
a web services interface and achieve the needed throughput (~3,000 records/second) to complete within the
completion time window.

3. WAS z/OS was co-located with the batch process and a COBOL "bridge" program utilizing WOLA was
written. An EJB written for WAS z/OS performed the outbound web services calls to the vendor package.

4. The real story is in how WOLA was utilized. The web service call was known to be the slow component in
this cycle. If single-threaded synchronous WOLA processing was used the needed throughput would not be
achieved. So the COBOL bridge program used the "advanced inbound" APIs to maintain 150 concurrent
connections over WOLA into WAS z/OS. The APIs were used asynchronously so program control was
returned to the COBOL program immediately. The COBOL program was designed to load all 150
connections with customer billing record requests, and to then cycle through the array of connections
checking for which had come back completed. WAS z/OS and WAS on distributed are multi-threaded so the
task was to (a) keep the flow of requests into WAS z/OS busy with the asynchronous WOLA calls, and (b)
scale up the WAS z/OS and distributed WAS resources to achieve the needed throughput.

5. If needed, multiple instances of the vendor tax package can be deployed to further parallelize the
environment. Benchmarking yielded the needed 3,000 records/second with one AIX server properly sized
and tuned to handle the throughput. The WOLA connection easily kept up.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 24

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
24

WP101490 Native API "Primer"

8.0.0.1 …

Provides a step-by-step introduction to the use of the native APIs with COBOL:

ZIP

Companion PDF with
detailed step-by-step

instructions

Logical diagrams
of API usage

Working code
illustrations

ZIP containing COBOL
programs and a

WOLA-enabled sample
EAR file application

When you're ready to begin using
the native APIs, this "Primer"
will assist you in understanding

how the APIs are used

Approaching the WOLA APIs may seem like a daunting challenge, but with a little help it's really quite easy. The
WP101490 Techdoc contains a step-by-step "Primer" document that will assist in this learning curve.

The Primer consists of a series of guided exercises (with supplied code samples) to exercise the APIs from
simplest to increasing complex usage scenarios.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 25

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
25

New in V8.0.0.1
"Development Mode" using the Proxy Application

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 26

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
26

Development Mode - Outbound Applications

Inbound …

The focus here is on developing and testing WOLA outbound applications without the
developer needing direct access to a z/OS system

WAS for Distributed WAS z/OS

ola.rar
and CF

WOLA
Proxy

CICS
(or IMS, Batch)

Target
Program

ola.rar
and CF

Application
Under Dev/Test

RemoteHostname = Where WOLA Proxy deployed

RemotePort = ORB port for bootstrap process

RemoteJNDIName = Of WOLA Proxy EJB

Connection Factory Custom Properties

cdat_devmode_overviewInfoCenter

Network
Flows RMI/IIOP to

Proxy on z/OS

InfoCenter

"Local Node" InfoCenter

"Remote Node"

Java developer writes
application to CCI in the

WOLA JCA resource adapter
just as if the application was

deployed on WAS z/OS

Limitations:
● Can not participate in global transaction 2PC

● Can not assert distributed WAS thread ID up to z/OS.

One of the challenges Java developers face when working on WOLA-enabled applications is the ability to do their
development and test on their workstations. WOLA is a z/OS technology and works cross-memory to address
spaces on the same LPAR. So how can applications be developed and tested without having to deploy the
application to a WAS z/OS instance each time? By providing a "proxy" function with WOLA so the application can
be tested on the development workstation and its requests appear to be talking using WOLA.

This function came into being in the 8.0.0.1 fixpack. It's referred to as "Development Mode," and it takes two
forms -- outbound development mode (shown above), and inbound development mode (next chart).

For outbound development mode the objective is to provide an ability for developers coding Java applications that
use the WOLA JCA resource adapter the ability to test their code against a real target z/OS address space ... but
without requiring their application be deployed to WAS z/OS each time.

New with 8.0.0.1 is a Proxy application that deploys on WAS z/OS that will use WOLA against a target external
address space such as CICS. The Proxy application stands ready to accept calls from development and test
machines. Those workstations use the 8.0.0.1 WOLA JCA resource adapter -- which may be downloaded and
installed in WAS on any platform -- to forward application requests up to the proxy application. To the application
on the development workstation (which the InfoCenter refers to as the "local node") it's just the Common Client
Interface (CCI) as implemented in a standard JCA resource adapter. The key is the definition for the connection
factory for the WOLA JCA resource adapter ... it now accepts custom properties that allows it to bootstrap into a
WAS z/OS environment and communicate with the Proxy application using RMI/IIOP.

In a nutshell ... the application under development/test on the workstation calls the CCI interfaces of the JCA
resource adapter. That resource adapter then uses RMI/IIOP to forward the requests up to the Proxy application
on WAS z/OS. The Proxy application on WAS z/OS then honors the calls and turns and drive actual WOLA
against the the target external address space.

Unit 6 - WebSphere Optimized Local Adapters

Unit 6 - 27

© 2012 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
27

Development Mode - Inbound Applications
Let's take the reverse ... the case where you wish a native z/OS program to make an
inbound call to a target EJB running in WAS. Can EJB be on WAS distributed? Yes ...

WAS z/OS

WOLA
Proxy

cdat_ola_remotequestInfoCenter

CICS
(or IMS, Batch)

WOLA Native Modules

Calling
Program

WOLA
APIs

Network

WAS Distributed

Federated namespaces
or operating within

same cell

WOLA API developer writes as if target EJB is
in the WOLA-attached WAS z/OS server
One parameter difference - requesttype on BBOA1INV or BBOA1SRQ

set to "2" (for remote EJB request) rather than "1"

EJB Developer develops stateless EJB with
WOLA class libraries as if deployed on z/OS

The new 8.0.0.1 development mode supports the reverse as well -- applications that make use of the WOLA
native APIs to call a target stateless EJB. The target EJB may now reside on a development WAS distributed
machine away from z/OS.

The Proxy application supplied by WOLA in 8.0.0.1 is still required to be in a WAS z/OS server that can be
reached using "real" WOLA from the external address space (CICS, Batch, IMS) into WAS. On the development
machine the EJB simply needs to be active in a WAS distributed server.

The WOLA Proxy application needs to perform a JNDI lookup of the "service," which is the JNDI name of the
target EJB. For it to do that it'll need knowledge of the JNDI namespace of the remote development workstation
WAS. That may be accomplished either by federating the namespaces of the two WAS cells (information on
doing this is available in the InfoCenter article cited on the chart), or by having the two environments (z/OS and
distributed) be part of the same WAS cell.

In any event the native API develop has an environment where the target EJB is off on some development
workstation. The only programming change needed is a single parameter on the BBOA1INV or BBOA1SRQ APIs --
setting requesttype to a value of 2 to tell the Proxy application to honor the proxy and forward on. The developer
of the EJB does not make any accomodations for this other than to follow the normal rules for developing a target
EJB for WOLA -- that is, it must implement the method execute() and it must use the supplied WOLA class
libraries for its home and remote interfaces.

End of UnitEnd of Unit

