
Unit 1a - Overview

Unit 1a - 1

© 2013 IBM Corporation
IBM Advanced Technical Skills

WBSR85
WebSphere Application Server z/OS V8.5

Unit 4 - Accessing z/OS Data

WebSphere Application Server V8.5 for z/OS

WBSR85
Unit 4 - Accessing z/OS Data

Unit 4 - Accessing z/OS Data

Unit 4 - 2

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
2

This page intentionally left blank

Unit 4 - Accessing z/OS Data

Unit 4 - 3

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
3

High Level of Data Access Approaches with WAS z/OS

Data abstraction and open standards …

There are five categories of data access approaches. We'll cover three in this unit and
one in the next unit. The fifth we'll leave to other workshops:

WebSphere
Application

Server for z/OS

Relational Data
Uses JDBC to access relational databases such as

IBM DB2 or other vendor JDBC implementations

Non-Relational Data
Uses Java Connector Architecture (JCA) to access

non-relational data such as CICS

Messaging
Uses Java Messaging Service (JMS) to access

messaging providers such as MQ

Memory Exchange Adapters
z/OS-only solutions that pass messages cross

memory using JCA adapters -- WOLA

Network Protocols
Protocols such as Web Services SOAP or Web 2.0

RESTful APIs to access remote data systems

DB2

CICS

MQ

There are several categories of approaches to accessing data that resides on z/OS. For this presentation we'll

focus on the first three -- relational data, non-relational data and messaging. We'll cover the memory exchange

adapters in the next unit.

We won't touch on the network protocol mechanisms such as SOAP or Web 2.0 technologies, but that's not to say

they're not very useful and very much a part of z/OS. All the major data systems on z/OS participate in Web

Services. It's a significant component of the overall story of accessing data. We're not delving into the topic for

two reasons -- (1) the focus is much more on the application and the configuration of the data subsystem (for

example, how to configure a CICS region to support web services, and (2) from a WAS z/OS perspective there's

not as much exploitation of z/OS directly.

So ... an interesting and useful topic, but beyond the scope of this workshop.

Unit 4 - Accessing z/OS Data

Unit 4 - 4

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
4

Data Abstraction Behind Open Standard Interfaces

Connection specifics …

The data access approaches all share a common theme -- hiding data subsystem
specifics behind standard APIs, with installable code to provide lower level access:

JDBC
Provider

Vendor Code

JCA
Resource Adapter

Vendor Code

JMS
Provider

Vendor Code

WebSphere Application Server V8

DB2 CICS MQ

API API API API API API API API API API API API

In V8:

JDBC 4.0

JCA 1.6

JMS 1.1

Vendor code has
understanding of

interaction specifics

with the data system

 Applications are
shielded from this

There's a common theme that runs across data access for the three categories we're focusing on ... and that is

the theme of "hiding" the data access specifics behind an open standard application interface. The purpose for

this is so application developers do not need to understand the nuances of CICS or DB2 access. Their focus is on

the open standard application interfaces. Behind those interfaces there is vendor-written code that takes care of

the lower-level specifics.

For WAS z/OS V8 -- and really WAS on all platforms since at the API layer "WAS is WAS" across all platforms --

the level of the specifications supported are JDBC 4.0, JCA 1.6 and JMS 1.1.

A good deal of this unit will focus on how the vendor-written code -- the IBM-written code in our case -- is installed

and configured into the WAS z/OS runtime, and how applications then make use of the support provided.

Unit 4 - Accessing z/OS Data

Unit 4 - 5

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
5

Another Common Theme - Connection Specifics

Local vs. remote connections …

The "Provider" supplies the vendor code that understands how to work with the data
system. Another component is needed - something to tell which data system to talk to:

Data
System
"A"

Data
System
"B"

Data Resource
Provider

Specific
Connection

Object

Specific
Connection

Object

API API API API API

Vendor Code

2

1

3

4

1. The provider supplies the code that interacts with the specific

data resource, as well as a framework for creating specific

connection objects

2. The specific connection objects provide details about which data

system to connect to and any name, port or other details required

3. Application do a JNDI lookup of the specific connection object

4. Then using that connection they access the data system named in
the specific connection object

DB2 "Data Source"

CICS "Connection Factory"

JMS "Connection Factory"

IBM Data
System

Name used to refer to the specific
connection object in WAS

Different names ... same concept

There's another common theme that runs across all three categories of data access ... a definition within WAS

that provides specifics about the connection to the data resource.

The "provider" is simply the vendor-supplied code that provides the mechanism for the connection, but it does not

say which DB2 instance to connect to, or which CICS region to use. You would not want to hard-code that kind of

information into the applications themselves, otherwise if the DB2 instance or CICS region information changes

you'd have to crawl through all the affected applications and change them.

So what the architecture provides is a definition that holds the connection specifics. Applications don't code the

connection specifics, they simply refer to the connection object and WAS resolves it to the actual data resource.

Note: in concept this is just like the role DD cards play in JCL. Applications reference the DD name, and JCL

resolves that reference to the actual name of the data set.

This "specific connection object" concept has slightly different names depending on the backend data resource

we're talking about. For DB2 it's called a "data source," and for CICS and MQ it's called a "connection factory."

The names are different, the concept is the same.

For any given WAS environment you're very likely to have multiple such data sources or connection factories,

depending on the variety of backend data resources you have. Applications are connected to the data source or

connection factory it needs. WAS takes care of the connection from there.

Unit 4 - Accessing z/OS Data

Unit 4 - 6

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
6

z/OS Theme - Choice of Local or Remote Connection

Relational …

On z/OS the specific connection details allow for two types of connectivity -- local,
which is a cross-memory connection, or remote, which uses TCP/IP:

Data Resource
Provider

Specific
Connection

Object

Specific
Connection

Object

API API API API API

Data
System
"B"

Network

Vendor Code

Data
System
"A"

Cross-Memory Connection
Uses z/OS cross memory services to access the
data system:

● DB2 - Type 2 JDBC

● CICS - EXCI

● MQ - Bindings Mode

● Involves Java and native code execution
Which means configuration will involve pointing to native libraries

Network Connection
Accesses the data system via the network and an
exchange protocol mapped on TCP/IP:

● DB2 - Type 4 JDBC

● CICS - CTG Gateway or IPIC

● MQ - Client Mode

● Involves Java execution only

On z/OS we have another theme to consider, and that's how the access from WAS to the data resource is made.

The two options are cross-memory or network. When the WAS z/OS server and the data resource are on the

same LPAR you may choose between them; when the WAS z/OS server is on a different LPAR from the data

resource then a network connection is required.

The cross-memory mechanism carry different names depending on the data source. For instance, DB2 cross-

memory connections are commonly called "Type 2 connections," which is a reference to the JDBC specification

for local native-code connection to the relational database server. For CICS the mechanism that is used is the

External Call Interface (EXCI) facility of CICS. For MQ the term used is "bindings mode."

All those cross-memory connections make use of the direct-connection facilities of the target data resource. As

such, it's necessary to incorporate the native code (that is, non-Java) used to make this low-level connection to the

data resource. DB2, CICS and MQ all supply such native libraries. This implies a configuration step to tell

WebSphere about the location of these native libraries. We'll show you how that's done for DB2, CICS and MQ as

we get to those sections in this unit.

A network connection makes use of the TCP/IP network to pass data requests from WAS into the data resource.

Unlike the cross-memory connections, these do not require the native libraries. These are all-Java

implementations. What's needed is information about the host and listener port for the target data resource.

Unit 4 - Accessing z/OS Data

Unit 4 - 7

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
7

Relational Data Access
JDBC

Our first stop on this journey is relational data base access ... which uses JDBC.

Unit 4 - Accessing z/OS Data

Unit 4 - 8

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
8

Framework of This Section's Discussion

JDBC provider …

There are five major areas of discussion within this JDBC sub-section of the unit:

DB2
z/OS

WebSphere Application
Server for z/OS

DDF
RRS XA

Transactional Support

DB2 JDBC Provider

Type 2 Data
Source

Type 4 Data
Source

1

3

4
2

5

1. Configuration of Provider
Where driver is located, Admin Console panels

used to install and configure

2. Transaction support based on
"Implementation Type" selected
1 phase or 2 phase, RRS or XA Partner Logs

3. Configuration of Data Sources
Admin Console panels used to configure

4. Implications of Type 2 v Type 4
Specifically, identity assertion

5. The new failover capabilities of
WAS V8
Ability to automatically fail over and fail back

There's a fair amount to discuss here, which is why we start off with an outline of sorts for the discussion that

follows. We have five things to touch upon when discussing JDBC access to DB2 z/OS:

1. How the JDBC provider is configured inside the WAS runtime environment. As you'll soon see, this is done

through the WAS administrative console by telling WAS where the DB2 installation path is located.

2. We need to have a brief discussion of the transaction support because how you configure the JDBC provider

will influence whether it's capable of supporting two-phase commit processing.

3. The data sources provide WAS information about which DB2 instance to connect to. Again, this is done

through the WAS administrative console. This is where you'll specify Type 2 (cross-memory) or Type 4

(network) connectivity.

4. The question of security and identity assertion comes up frequently when speaking about data access, and

how identity assertion is accomplished differs between Type 2 and Type 4.

5. Finally, we wish to explore a new function of WAS Version 8, which provide a way to identify when a primary

data resource is lost and failover to a defined alternate data source. This includes the ability to check for the

return of the primary and failback. And with WAS z/OS there's also a new MODIFY command that

influences this failover and failback.

Unit 4 - Accessing z/OS Data

Unit 4 - 9

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
9

Configuring the JDBC Provider for DB2 z/OS

Transaction support …

This is a relatively simple process involving a few panels ... but some interesting
implications are surfaced by the choices made:

Set the scope

Conditional
drop-down lists

Name you supply
here ends up

displaying here

DB2 Using IBM JCC Driver
Contains the JDBC 4.0 specification support

Backwards compatible so applications written to JDBC
3.0 will work with this driver

For WAS z/OS V7 and later this is recommended provider
for IBM z/OS DB2, provided your DB2 has the db2jcc4.jar
file (which indicates this driver is present).

DB2 Universal JDBC Driver Provider
JDBC 3.0 specification support

Connection Pool Data Source
If data source is Type 4, then 1 Phase Commit only

If data source is Type 2, then 2 Phase Commit with RRS

XA Data Source
If data source is Type 4, then 2 Phase Commit with XA

Type 2 data sources are not supported under this
implementation type

The JDBC Provider definition is what provides WAS information about where the JDBC drivers are located. With

that information WAS may load those drivers. Those drivers are what provide the open standard JDBC interface

to the applications, and perform the lower-level connection to the DB2 instance.

In the Admin Console the JDBC provider information is accessed through the navigation tree under Resources,

then JDBC Providers. To define a new JDBC Provider you click on the new button which brings up a set of drop

down lists where you begin your configuration. The drop down lists are conditional ... that is, what you select for

the first drop down list affects what will appear in the next. In our example we're going to show you DB2, so the

first selection under "Database type" will be DB2.

The "Provider type" drop down then has a set of drivers to select from. The difference between the first two, which

have very similar names, is the level of the JDBC specification support provided. Which you choose is really a

factor of what JDBC driver your copy of DB2 supplies. Look in your DB2 /classes directory and choose the

Provider Type accordingly:

db2jcc.jar only -- DB2 Universal JDBC Driver Provider

db2jcc.jar and db2jcc4.jar -- DB2 Using IBM JCC Driver

We're using DB2 z/OS 9.1 for the workshop lab and it includes the db2jcc4.jar file.

If your DB2 has the JDBC 4 driver, you should use it. Applications written to JDBC 3.0 are compatible with the

newer JDBC 4.0 standard. They do not need to be re-written.

The "Implementation Type" plays a role in what transaction capabilities you'll have depending on how you

configure your data sources. The "Connection Pool Data Source" implementation is what you'll select if you intend

to configure Type 2 data sources. That uses RRS to provide two-phase commit processing. If you intend to use a

Type 4 data source and you need two-phase commit processing, then you'll chose "XA Data Source."

All this talk about transactions implies a need to briefly cover that topic ...

Unit 4 - Accessing z/OS Data

Unit 4 - 10

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
10

Resource Recovery Services (RRS)

RRS Logsteam Log

2

3

RRS is a facility of z/OS. It is Sysplex

aware. The RRS log may be maintained
in Sysplex-shared data structures. This

allows cross-Sysplex Two-Phase Commit

(2PC) processing across instances of

WAS and resource managers.

Brief Discussion of Transaction Support

Provider code supplied by DB2 …

The previous chart mentioned RRS and XA as the two means of supporting global
transactions from WAS into other resource managers ...

Application Server

Transaction

Manager

DB2

CICS

IMSApplication

XA
Partner

Log

Resource Managers

1

4
5

XA is an open standard

for distributed Two-
Phase Commit. The

transaction logs are

maintained by WAS.

The "Implementation
Type" setting on

Provider determines
which is used

Transaction management is a fairly complex topic, but for the purposes of this workshop we can reduce the

discussion to a couple of key things related to WAS z/OS. What we're striving for on this chart is an

understanding of how global transactions are initiated and how they're coordinated. This is what helps explain the

role of RRS versus XA, and how that relates the JDBC "implementation type" we mentioned on the previous chart.

Here's what the numbered blocks refer to:

1. Global transactions are initiated by the application based on what the application designer knew of the data

requirements. In the WAS environment that means the application requests of WAS itself the start of a

global transaction for which WAS will be the manager.

2. For transactions that span multiple resources something must act as the coordinator of information about

each transaction participant's state. Coordinated multi-resource transaction involve a two-phase process by

which the manager (WAS) asks if everyone is ready to commit, and then if everyone agrees then a final

commit is issued. If even one party in the transaction says "no" then the transaction is rolled back.

Resource Recovery Services (RRS) is one such "synch point coordinator." WAS and the major z/OS data

resources all understand how to register into and use RRS for global transactions. RRS is used when the

implementation type is "Connection Pool Data Source" and the data source type is Type 2.

3. RRS maintains its transaction information in a Sysplex-enabled logstream data structure. This is what

allows RRS to be a Sysplex-wide synch point coordinator.

4. The updates to DB2 and other data resources are made based on the application. When the application

requests the transaction manager of WAS to commit the transaction, it then goes through the 2PC

processing discussed under #2. If RRS is used, then RRS is the synch point coordinator for WAS as it

processes the 2PC.

5. If the transaction is coming from off-platform or the implementation type is "XA Data Source" with a Type 4

connector, then rather than using RRS WAS uses file system logs that maintain the state of the distributed

transaction.

The "Implementation Type" influences what synch point coordinator is used.

Unit 4 - Accessing z/OS Data

Unit 4 - 11

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
11

The Provider Code Supplied by DB2

Data sources …

WAS z/OS does not ship with the provider code ... you point to it in the DB2 directories
in the WAS configuration panels:

/<mount_point>/db21010/jdbc

 /classes/

 /lib/

db2jcc.jar

db2jcc_javax.jar

db2jcc_license_cisuz.jar

db2jcc4.jar

sqlj.zip

sqlj4.zip

libdb2jcct2zos.so

libdb2jcct2zos_64.so

libdb2jcct2zos4.so

libdb2jcct2zos4_64.so

JDBC Provider Configuration Panel in WAS:

WAS then puts your values into the environment
variables. Upon next restart of the server it can

find and load the specified JDBC driver.

DSN1010.SDSNLINK APF

DSN1010.SDSNLOAD APF

DSN1010.SDSNLOD2 APF
PDSE

If using the Type 2 native drivers then servant
regions must have access to the PDSE modules
as well

STEPLIB or Linklist
Lab systems have these in Linklist so no STEPLIB is necessary

The JDBC Provider code for DB2 is provided as part of the DB2 product installation. There are two pieces to this

-- files in the associated DB2 file system, and PDSE module libraries. The PDSE libraries are of interest if you

plan to use the Type 2 (cross-memory) driver.

The configuration of the JDBC Provider will as you for the "driver path" and "native library path." The "driver path"

is the directory in which the db2jcc4.jar file is located. When you specify this path in the Admin Console WAS

then saves your value into the ${DB2_JCC_DRIVER_PATH} environment variable. When the server is restarted

WAS will then have knowledge of and access to the JDBC driver class files it needs to load to provide the support.

The "native library path" is needed when you intend to use the Type 2 driver. This will be the /lib directory

located at the same level as the /classes directory. Again, WAS will save the value you provide to an

environment variable, this time ${DB2_JCC_DRIVER_NATIVEPATH}.

If you do plan to use the Type 2 driver then you'll also need to give the WAS servant region access to the PDSE

libraries SDSNLINK, SDSNLOAD and SDSNLOD2. You may either STEPLIB to those (again, from the servant proc)

or have them in Linklist. For this workshop they're in Linklist.

Unit 4 - Accessing z/OS Data

Unit 4 - 12

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
12

JDBC Data Sources -- Specific Connection Information

Application lookup of JNDI …

The data source is defined under the provider and has information about how to
connect to the desired DB2 instance:

JDBC
Data Source

JDBC Provider
Defines access to implementation code

Custom Property:

ssid = DSNX

The authentication alias topic
requires a bit more explanation

... upcoming chart

2 = Native (X-mem)
4 = Java (Network)

When z/OS and
Type 2, this is the

DB2 location name

If Type 4, this is
where you'd put in
host and port for

DB2 z/OS DDF

Display Name

JNDI name used by
application when looking

up the data source

JDBC
Data Source

More data sources possible,
each with a separate set of

connection specifics

Once the Provider is defined and in place then you may define data sources. Data source definitions are

associated with a Provider definition. The easiest way to accomplish this is to go to the Provider general

properties page and click on the "Data Sources" link that's off to the right-hand side of the page.

On the data source definition panel there are three sections of information you'll be asked to provide:

● The display name and the JNDI name for the data source. The display name is simply that -- what is

displayed in the Admin Console. The JNDI name is what the application will look up to make the connection to

the DB2 instance. The JNDI name may be any valid string ... typically we see people coding this as "jdbc/"

and then the display name.

● You'll then specify the Type (2 or 4), the "Database name" -- which for DB2 z/OS is really the DB2 location

name, and if you specified Type 4 then the "Server name" (IP host name where the DDF function is listening)

and the listener port.

● The authentication alias is a way to set a userid and password pair to be passed over the connection into DB2

so DB2 has an understanding of who it is that's asking for the database services. This is a topic that requires

more than a sentence or two to explain, so we'll defer this to an upcoming chart.

If you had multiple DB2 instances in your environment and you wished some applications to go to one and other

applications to go to another you would need multiple data source definitions. WAS allows this. You may have as

many data source definitions under a Provider definition as you need.

There is a custom property you may add to a data source definition that defines the specific Subsystem ID (SSID)

to which WAS should connect when using a Type 2 connector. There are situations where this would not be

required, but it is a good practice to supply it. For Type 4 the connection is based on the host and port so the

SSID value is not needed.

Unit 4 - Accessing z/OS Data

Unit 4 - 13

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
13

Application Lookup of Data Source JNDI

Identity assertion …

Application "resource references" are bound to data source JNDI names ... that's the
sequence of associations that ultimately provides JDBC connection

Application EAR File

<resource_ref>data</resource_ref>

Application has a symbolic reference in the

code. XML deployment descriptors tell WAS
Admin to ask deployer to resolve the reference

Application deployer resolves
the reference to the JNDI

name of the data source they
wish the application to use.

JDBC
Provider

JDBC
Data Source

jdbc/type2ds

DB2
z/OS

Provider is what supplies
the implementation code.

 Data Source supplies
connection specifics

Connection to specific
DB2 instance made

based on information
in data source

As we mentioned earlier, applications do not hard-code the connection information to the data resource. For

JDBC the role of the data source is to provide that specific connection information. The application need only look

up and bind to the data source to get the connection through to DB2.

The application references the data source in an abstract way -- it uses string reference in the Java code which is

then called out as a resource reference in the XML deployment descriptor. When you deploy the application the

WAS Admin Console function looks at all the deployment descriptors to understand what references need

resolving. (It is possible to pre-resolve resource references to JNDI names so that application deployment may

skip this step ... in this example we're showing the resource reference unresolved, which means the Admin

Console will call it out during application deployment.)

If you want an application to use a particular JDBC data source you would resolve the resource reference to the

JNDI name of the data source. Then when the application is invoked and seeks to use DB2, it will perform a JNDI

lookup of the data source, which tells WAS to create the connection object. That will use the associated Provider

code and connect to the specified DB2 instance.

Unit 4 - Accessing z/OS Data

Unit 4 - 14

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
14

Identity Assertion from WAS into DB2

Test Connection button …

There's a few different options depending on if Type 2 or Type 4:

Type 2
Data Source

DB2 z/OS

Authentication Alias

ID of Servant Region

ID of Execution Thread

- or -

- or -

1

2

3

1. An alias is a hard-coded userid/password pair that WAS passes on request

2. If no alias then Type 2 uses the ID of the WAS servant region

3. Use RunAs roles and map ID of execution thread to request into DB2

Type 4
Data Source

DB2 z/OS

Authentication Alias

Map LDAP to RACF ID

- or -

4

5

4. An alias is a hard-coded userid/password pair that WAS passes on request

5. New function that allows a distributed LDAP identity to be mapped to a RACF identity
Function shipped in z/OS 1.13 and rolled back to 1.11. Required DB2 z/OS V10 to use.

Earlier we made mention of the identity that flows from WAS into DB2 for authentication and authorization

purposes. What ID flows is a function of which JDBC driver type you're using as well as a few other configuration

elements.

If you're using a JDBC Type 2 connector then the ID is based on the following sequence of criteria:

1. If an "authentication alias" is defined and pointed to from the data source definition, then that alias is used.

An alias is a stored ID/password pair that is encrypted and maintained in the WAS configuration XML. That

ID/password is then flowed over the connection to DB2 and whatever ID is defined in the alias is asserted

into DB2.

2. If no alias is defined then WAS will assert the identity of the servant region into DB2.

3. If you have RunAS roles enabled then WAS will take the identity of the execution thread, which would be the

identity of the authenticated user into WAS, and assert that across the connection into DB2.

However, if you're using a JDBC Type 4 connector then the ID is based on the following sequence:

4. Again, if an alias is coded and pointed to from the data source, then the alias flows over to DB2.

5. There is a new function that allows a distributed LDAP identity to flow over to z/OS and be mapped to a

RACF ID. The mapped RACF ID is what is used in DB2 (or CICS) with RACF maintaining a log of the
association from LDAP-to-RACF that was made for the access to DB2.

In short, some identity will be asserted. The question is what identity and what is it based on.

The Wildfire WAS Security workshop goes into much greater detail on these and other security considerations.

Unit 4 - Accessing z/OS Data

Unit 4 - 15

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
15

The "Test Connection" Button

Data resource failover …

Will perform a rudimentary connection test ... its success depends on the scope of the
JDBC Provider

CR SR

DMGRScope=Cell
Test run from

DMGR which has
servant region

CR

Node AgentScope=Node
Test run from Node
Agent which does
not have servant

CR SR

ServerScope=Server
Test run from Server

which has servant

The test is executed from the
servant region JVM ... so the
question is whether the

server implied from the scope
has a servant region

There is a "Test Connection" button associated with data sources, and there has been some confusion about this

on z/OS for some time. The confusion arises from the fact that sometimes the button works, and sometimes it

does not. The key is understand the "scope" of the data source.

For that "Test Connection" button to work it must have access to a servant region JVM to run the test. If the

scope is "Cell" then the DMGR is used, and it has a servant region. The test will succeed, provided the connection

is defined properly. If the scope is "Server" then the named server has a servant and the the test will succeed.

But if the scope is "Node" -- which is the most common scope for data resources -- then the test is attempted from

the Node Agent, which has no servant region. The test fails. You get the error shown on the screen.

Unit 4 - Accessing z/OS Data

Unit 4 - 16

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
16

Data Resource Failover - Four Questions

Essentials of failover support …

The new function in WAS V8 (all platforms) is designed to address four questions
related to data resource failover and failback:

JDBC
Data Source

Primary Data Resource

Alternate Data Resource
JDBC

Data Source

Application

1

2

3

4

1. Has the primary data resource failed?
We'll discuss the mechanism used to trigger the failover function

2. What alternative data resource is available?
This is defined with a new variable

3. Has the primary data resource recovered?
A test for primary resource recovery is made

4. Should failback to the primary be manual or automatic?
You may not want automatic failback ... there are ways to control this

Now we'll turn our attention to a new feature of WAS V8, which is present on all platforms. Later we'll take a look

at how WAS z/OS V8 extended this with a few other platform-exclusive functions.

This new feature has to do with failing over to an alternative data resource when the primary resource is lost. In

designing this new feature the developers had to answer four design questions:

1. How do we determine that the primary data resource has failed? This is done by watching for failures on

application getConnection() requests. A failure to get a connection to the data resource behind the data

source is an indication something is wrong. As you'll soon see, there's a parameter to indicate how many

consecutive failed getConnection() requests it takes to trigger the failover.

2. How do we know what alternate resources are available? This is done with a new custom property that

defines the alternate data source to use in the event the primary is deemed lost.

3. How do we know when the primary data resource has recovered? This is done by having WAS periodically

issue a test connection request to the primary data resource. New custom properties define how frequently

this polling is done.

4. If the primary resource is recovered, do we fail back automatically or failback manually? The answer is

either. Controls are provided to allow automatic failback or to disable automatic failback and allow you to

manually restore the primary connection with a z/OS MODIFY command.

In other words, the designers of this new function considered the cycle of events -- failure, detection of failure,

failover, primary recovery, detection of primary recovery, failback -- and designed settings around that cycle.

Unit 4 - Accessing z/OS Data

Unit 4 - 17

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
17

Essentials of Resource Failover

Other custom properties …

A new environment variable is used to define an "alternate JNDI" for use when the
primary JNDI experiences getConnection() problems:

jdbc/backup
Connection Pool

Network

getConnection()

Cross-Memory Type 2

Application

Connection Pool

DB2
z/OS

DDF

DB2
z/OS

Data

Share
Group

LPAR

alternateResourceJNDIName

= jdbc/backup

New V8 Connection Pool Custom Properties

1

2

3

4

5

6

cdat_dsfailoverInfoCenter

jdbc/myDB2ds

Important!
New getConnection() requests. This

does not move move existing connections
lost due to outage. Application must detect

and issue new getConnection().

This chart provides a picture of the essential process of resource outage detection and failover. The charts that

follow will add to the details and provide the complete picture.

Note: this picture is mapped onto a DB2 z/OS data sharing group scenario because that's where this new feature

will really shine. In a Sysplex environment with a WAS cluster across multiple LPARs and a DB2 sharing group in

the background, this allows Type 2 cross-memory access with the ability to failover to a Type 4 connection to the

other LPAR.

Let's walk through the numbered blocks on the chart:

1. Applications perform a JNDI lookup of the data source as part of their initialization. Applications know which

data source JNDI to use based on how the application was configured at deployment time. Resource

references in the application's deployment descriptors are mapped to the configured data source JNDI

names. That's what resolves the abstract reference in the application to the actual data source.

2. Applications request a connection from the data source connection pool by issuing a getConnection()

request.

3. If the getConnection() is successful a connection from the connection pool is given over to the

application. Here we're illustrating that connection being a Type 2 cross-memory connection to DB2.

4. A new custom property to the connection pool definition defines an alternate data source JNDI to use in the

event the primary data source is lost (as determined by failed getConnection() requests). The JNDI

name provided on this property must be associated with a properly defined data source.

5. Imagine an application issues a getConnection() request and it fails. (We'll soon see that there's
another property to define a number of consecutive failures that triggers this.) What WAS will now do is

consult the alternateResourceJNDIName custom property and provide the requesting application a

connection object from the alternate data source connection pool.

Note: as indicated on the chart, this is for new connections. Existing connections are lost and it's up to the

application to re-establish the connections, which would then come from the alternate connection pool.

6. In this picture we're showing the alternate data source defined to use Type 4 cross-LPAR to another

instance of DB2 in the data sharing group.

Unit 4 - Accessing z/OS Data

Unit 4 - 18

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
18

Other Connection Pool Custom Properties

z/OS MODIFY …

Four other connection pool custom properties are also made available:

Determines the number of consecutive getConnection()
failures are needed to trigger the failover processing

Integer, Default = 5
failureThreshold

After failover has occurred, this determines the frequency
of polling to see if the primary resource has recovered

Integer, Default = 10 seconds

resourceAvailabilityTestRetryInterval

Indicates that automatic failover is

permitted but automatic failback is disabled
Boolean, Default = False

enablePartialResourceAdapterFailoverSupport

Disables automatic failover or failback.
Used to allow configuration of failover
values, but control using z/OS MODIFY

Boolean, Default = False

disableResourceFailOver

disableResourceFailBack

cdat_dsfailoverInfoCenter

We just saw one new connection pool custom property -- alternateResourceJNDIName, which defines the

JNDI name to fail over to in the event WAS determines it's time to perform the failover. But that custom property

is not the only custom property associated with this new function. Here are the others. Note the InfoCenter

search string -- these properties are spelled out in detail in that article.

● failureThreshold -- this property determines how many getConnection() failures in a row are needed

to trigger the failover ot the defined alternate JNDI name. This is an integer value and it defaults to 5. If you

set this value to 1 you create the possibility for failover due to some transient connection problem. A number

higher than one insures WAS sees a persistent issue before failing over.

● resourceAvailabilityTestRetryInterval -- this is related to how frequently WAS issues the test

connection request to see if the primary resource has recovered after a failover has been executed. This is an

integer and defaults to 10 seconds. Setting this value to a very low number implies increased overhead due to

polling; setting this value to a very high number implies infrequent polls to test for primary resource recovery.

● enablePartialResourceAdapterFailoverSupport -- this tells WAS to failover but do not automatically

failback. There may be cases where you wish to control manually failback takes place. Failing back to the

primary data resource can be accomplished with the z/OS MODIFY command which we'll cover on the next

chart. So coding this tells WAS to failover but leave failing back to a manual process.

● disableResourceFailOver and disableResourceFailBack -- with either of these set to True the

automatic failover and failback is disabled. But the MODIFY failover and failback (next chart) still applies. So

these custom properties allow you to set up the alternate JNDI name but leaves triggering the failover and

failback to you. This is particularly useful for cases of planned outages.

Unit 4 - Accessing z/OS Data

Unit 4 - 19

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
19

z/OS MODIFY Control of Failover and Failback

z/OS Action Notification …

The following MODIFY commands will act upon a server where the connection pool
custom property alternateResourceJNDIName has previously been configured:

F <server>,FAILOVER,'<JNDI Name>'

F <server>,FAILBACK,'<JNDI Name>'

F <server>,DISABLEFAILOVER,'<JNDI Name>'

F <server>,ENABLEFAILOVER,'<JNDI Name>'

Note the single quotes
enclosing the JDNI name

The JNDI name is that of the
primary data source. Never the
defined alternate data source.

Manual Failover to Alternate and Failback to Primary

Manual Disable or Enable of Automatic Failover / Failback

The JNDI name is
that of the primary
data source. Never

the defined alternate
data source.

These MODIFY commands override connection
pool custom properties you may have set of
enable and disable of failover and failback

rxml_mvsmodifyInfoCenter

We've alluded to new z/OS MODIFY commands that affects the failover and failback capabilities, and here they

are:

● F <server>,FAILOVER,'<JNDI Name>' -- when alternateResourceJNDIName is coded and a

properly defined alternate data source with that JNDI name exists, then this MODIFY command will invoke the

failover at the time you issue this command.

Note: in all cases the <JNDI Name> value is the primary data source JNDI name ... never the alternate

resource JNDI name. alternateResourceJNDIName is a custom property on the primary data source

connection pool. By providing the JNDI value for the primary you allow WAS to read the custom property for

the alternate JNDI name and use it for manual failover.

● F <server>,FAILBACK,'<JNDI Name>' -- this tells WAS to fail back to the primary resource when this

command is issued.

● F <server>,DISABLEFAILOVER,'<JNDI Name>' -- this will disable automatic failover. It has the same

effect as the custom property disableResourceFailOver discussed on the previous page, but the

MODIFY command allows the effect to be dynamically imposed without requiring a server restart. The

MODIFY FAILOVER will invoke failover even though the automatic failover is disabled.

● F <server>,ENABLEFAILOVER,'<JNDI Name>' -- this will disable automatic failback. It has the same

effect as the custom property disableResourceFailBack discussed on the previous page, but with the

benefit of being dynamically imposed. Again, MODIFY FAILBACK will invoke failback even though automatic

failback is disabled.

Unit 4 - Accessing z/OS Data

Unit 4 - 20

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
20

z/OS failureNotificationActionCode

Non-relational …

These define actions to take when the primary is unreachable and any defined alternate
JNDI resources are also unreachable:

failureNotificationActionCode = 1 | 2 | 3

Issue a BBOJ0130I message, but take no other action
BBOJ0130I: CONNECTION MANAGEMENT IN A SERVANT REGION DETECTED THAT THE

RESOURCE IDENTIFIED BY JNDI NAME jdbc/type2ds IS DISCONNECTED FROM SERVER

z9cell/z9nodea/Z9SR01/z9sr01a. ACTION TAKEN: NONE.

1

Issue PAUSELISTENERS for the server; RESUMELISTENERS when resource is back
ACTION TAKEN: PAUSING LISTENERS.

BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_1 has stopped

listening on host * port 10065.

 :

BBOO0222I: ZAIO0002I: z/OS asynchronous IO TCP Channel TCP_4 has stopped

listening on host * port 10068.

Front-end routing
devices will detect

loss of listener ports
and route to other

members of a cluster

2

Stop applications using failed resource; restart applications when resource is back

Makes affected application unavailable but
leaves intact other applications in the server

3

The failureNotificationActionCode setting takes effect when WAS z/OS detects the defined primary

JNDI is unreachable as well as any defined alternate JNDI resources. If WAS z/OS detects either primary or

alternate is reachable, then this property's behavior does not take effect.

1. If the value is set to 1 then all WAS z/OS will do is issue a message but take no other action. This is one

step more than occurred prior to WAS V8 where no indication was offered.

2. If the value is set to 2 then WAS z/OS will issue a PAUSELISTENERS command for the affected server. No

additional work will flow to this server. The benefit of this is that many front-end work routing functions will

detect the absence of the listener port and invoke other routing options, most notably routing to other

members in a WAS cluster. When WAS z/OS detects the failed resource has recovered, it will issue a

RESUMELISTENERS command, which opens the server back up for work. The downside to this is that all

applications in the server are affected by this ... even applications not using the data source with the failed

resource behind it. That's why the third option exists ...

3. If the value is set to 3 then WAS z/OS will stop the applications that are using the data source JNDI that has

experienced the connection failure to the backend data resource. Other applications remain active and use

whatever data sources they are using that are in good working order. Be aware that many front-end routing

functions will not detect this. But some will -- the WAS z/OS Proxy Server will, as will the WAS On Demand

Router.

If the value is set to something other than 1, 2 or 3 the function is ignored.

If you want these behaviors but not automatic failover, then omit the alternateResourceJNDIName property, or

have that property set as well as the disableResourceFailOver property set. Automatic failovers won't occur

but one of the three behaviors above will.

Unit 4 - Accessing z/OS Data

Unit 4 - 21

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
21

Non-Relational Data Access
CICS

Unit 4 - Accessing z/OS Data

Unit 4 - 22

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
22

The Role of the CICS Transaction Gateway Product

Two topologies …

Connectivity from WAS to CICS requires the CICS Transaction Gateway product to
provide the necessary software function. There are several components of CTG:

CICS Transaction Gateway for Multiplatforms

CICS Transaction Gateway for z/OS

http://publib.boulder.ibm.com/infocenter/cicstgmp/v8r1/index.jsp

http://publib.boulder.ibm.com/infocenter/cicstgzo/v8r1/index.jsp

Windows AIX Linux

z/OS

The most recent version is V8.1

Two key components:

Java Connector Architecture (JCA) compliant resource adapter
This is a package of code that installs into the WAS runtime environment. It provides

the open standard application interface and code to interact with CICS. The bundle is

packaged as a "RAR" file (Resource ARchive).

Code to run as a started "Gateway Daemon" process or task
The Gateway Daemon provides an intermediary agent for clients to connect to; the

Gateway Daemon then communicates with the CICS region to complete the connection

We start this by bringing CICS Transaction Gateway into the discussion. It plays a key role in connecting Java EE

applications (running in WAS, as an example) to CICS.

CICS Transaction Gateway (CTG for short) is a separately licensed product from either CICS or WAS. That

means it must be acquired and properly licensed to use. It comes packaged for Multiplatforms (Windows, AIX,

Linux) and z/OS. The most recent version is 8.1.

There are two key components to CTG, and it's important to understand this distinction to properly understand the

different topologies possible using WAS and CTG.

The first component is a Resource Archive file (RAR file) that contains the code for a fully-compliant Java

Connector Architecture (JCA) resource adapter. This gets installed into the WAS runtime environment and

provides the Java class files your application would use to interact with CICS. Those Java class files implement

the Common Client Interface (CCI), an open standard programming interface. They also provide the function that

understands how to communicate with CICS.

The second component is code that runs as the "Gateway Daemon" -- a started task or process that listens on a

network port and acts as a "gateway" (hence the name) between the client and the CICS region.

Depending on the topology you choose to employ, you would use one or both of these components. The RAR file

is always needed for applications to communicate from WAS to CICS. The Gateway Daemon may be used,

depending on the topology you choose to use.

Unit 4 - Accessing z/OS Data

Unit 4 - 23

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
23

EXCI

Two Simple Topologies ... to Start the Discussion

IPIC …

There are several variations on topologies and it can be a bit confusing at first. Let's
start with two relatively simple examples to set some context:

WAS z/OS

CTG Resource
Adapter

Application

z/OS LPAR

Application Users

EXCI

CTG
Gateway
Daemon

WAS Dist.

CTG Resource
Adapter

Application
Network

CICS
Region

1

2

1. WAS uses RAR to access CICS with EXCI
This is known as "Local Mode" in CTG terminology

2. WAS uses RAR and TCP to access Gateway;
Gateway uses EXCI to access the CICS region
This is known as "Remote Mode" in CTG terminology

We need to
introduce IPIC

Rather than put up a chart that shows all the variations of toplogies (that gets confusing), let's focus on two

relatively simple (and common) topologies.

1. The first involves WAS on z/OS co-located with the target CICS region on the same LPAR. The connectivity

between WAS and CICS is using the CICS External CICS Interface (EXCI). Users on the web come into the

WAS server over whatever network hops are between them and WAS. WAS uses the installed CTG

Resource Adapter (along with native code files not pictured on the chart) to drive the EXCI interface and gain

access to the CICS region. In CTG terminology this is known as "local mode."

There is no Gateway Daemon in this first scenario. All that's needed is the CTG Resource Adapter. This

scenario supports COMMAREA but not Channels/Containers. Two Phase Commit (2PC) processing is

supported using RRS as the synch point coordinator.

2. The second scenario involves WAS on a distributed platform (Windows, AIX, Linux) accessing CICS over a

network. In this case a CTG Gateway Daemon on z/OS is used. The CTG Resource Adapter is also used

in the WAS server on the distributed platform. The CTG Gateway Daemon listens on a defined port for

incoming connection requests from the distributed WAS server. The Gateway Daemon then turns and uses

EXCI to connect to the CICS region. In CTG terminology this is known as "remote mode."

In this case there is both a CTG Resource Adapter (installed into the WAS environment on the distributed

platform) and a Gateway Daemon instance.

This chart represents two relatively simple topologies. But there's a piece missing from this chart -- IPIC. IPIC is a

means of transferring ECI calls over TCP/IP to a CICS region. Let's take a look at IPIC, then we'll get into how all

this works with WAS z/OS.

Unit 4 - Accessing z/OS Data

Unit 4 - 24

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
24

CICS and IPIC

Our focus …

IPIC is a CICS program call protocol that maps on TCP/IP (or SSL). There are two
modes -- "local" and "remote":

ipicconfigCTG InfoCenter

Key Attributes of IPIC Support:

● Provides Channels/Containers
support, which overcomes 32K
barrier of COMMAREA

● Provides distributed two-phase
commit processing via XA protocol

CTG
Gateway
Daemon

Consolidate many
distributed WAS servers

using the Gateway.

z/OS GW - Global TX
Dist GW - Local TX

ECI

ctg.ini

z/OS or Dist. IPIC2

CICS Region

TCPIPSERVICE

WAS
Any Platform

CTG Resource
Adapter

Application

The TCPIPSERVICE in
CICS is defined with

PROTOCOL=IPIC and a
PORT number

The definition in WAS
points to the host and

port of the CICS region.

IPIC

1

Global TX using XA

IPIC is a protocol CICS uses for clients to interact with CICS over the network. It first came into being some years

back ... in CICS 3.2 and CICS Transaction Gateway 7.2. It provides support for Channels/Containers (which

permits messages larger than 32K, which is the limit for COMMAREA). It provides global transaction support with

two-phase commit using XA when in "local" mode (no Gateway between WAS and CICS), or using the Gateway

on z/OS.

A TCPIPSERVICE is defined in CICS to use IPIC as its protocol and listen on a specified port. The CTG

InfoCenter has information on how this is done. It's relatively standard CICS system programmer work. It is an

essential piece of this ... absent this TCPIPSERVICE WAS will not be able to talk IPIC to CICS.

There are two "modes" -- "local" and "remote" ... both of which are somewhat confusing, but we'll clarify the

distinction here.

1. In "local" mode there's no Gateway Daemon ... the CTG Resouce Adapter installed into the WAS runtime

(on any platform) is configured to use IPIC to communicate with the CICS region IPIC port. That

configuration is done in the JCA Connection Factory custom properties, which we'll show in an upcoming

chart. The WAS server communicates directly with the CICS region using the IPIC protocol. IPIC rides on

either TCP or SSL.

Note: a limitation of this is that there must be an IPCONN definition for each WAS server connecting to the

CICS region. You may wish to configure in "remote" mode (next) to overcome this.

2. In "remote" mode there is a Gateway Daemon. WAS runtimes (any platform) communicate with the

Gateway using ECI, and the Gateway then uses IPIC to communicate with the CICS region. This topology is

useful when there's a larger number of WAS server environments seeking to communicate with CICS. The

Gateway serves as a consolidation point for the connection into the CICS TCPIPSERVICE.

Note: global two phase commit using RRS is possible when the Gateway Daemon is located on z/OS. If the

Gateway Daemon is on a distributed platform then local transaction only.

Unit 4 - Accessing z/OS Data

Unit 4 - 25

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
25

Many Options ... Our Focus Will Be on WAS z/OS

CTG RAR file …

This workshop is focused on WAS z/OS, so our discussion of CTG for access to CICS
will be on z/OS-related topologies:

CICS
Region

WAS z/OS Runtime

Application

CTG Resource
Adapter

Connection

Factory

Custom
Properties

CTG Gateway
Daemon on

z/OS

EXCI

IPIC

ECI

EXCI

1

3
4

1. The installation of the CTG Resource Adapter
Which is the starting point to providing WAS-to-CICS connectivity

2. The basics of the TCPIPSERVICE and IPCONN definitions in CICS
To show the interrelationship between values there and what's coded on the connection factories

3. The configuration of JCA Connection Factories
In particular the configuration of the custom properties in support of the connection types -- EXCI, IPIC or

to Gateway Daemon

4. An overview of the CTG Gateway Daemon
To give you a sense for the structure and configuration settings of the Gateway Daemon

TCPIPSERVICE

2

IPIC

The combination of topologies possible with WAS across all platforms and CTG in its various uses can get large.

Rather than try to perform a survey on all those combinations, we'll focus instead on those related to WAS on

z/OS. That means we'll cover the following in this section:

1. Installation of the CTG Resource Adapter into WAS z/OS -- this is a relatively easy process done through the

WAS administrative console. The resource adapter RAR file ships with CTG, and it's just a matter of pointing

to that RAR file during the installation process. WAS then copies the RAR binaries into its configuration

directory and you're done. But this must be done, otherwise there can be no connectivity using ECI, IPIC or

EXCI to CICS.

2. Overview of the CICS configuration in support of IPIC -- to support IPIC connections coming in from a WAS

server, the CICS region must have a TCPIPSERVICE definition and an IPCONN definition. The values

provided there correspond to what you provide on the connection factory definition.

3. Configuration of the JCA Connection Factories -- connection factories are like JDBC data sources ... they

carry information about the connection specifics. Depending on the nature of the connection (EXCI, IPIC, or

to a Gateway Daemon instance) the values in the connection factory are different. We'll show you what those

values are and illustrate how they correspond to the values in the CICS region.

4. Overview of the CTG Gateway Daemon on z/OS -- the CTG Gateway Daemon on z/OS is a started task that

listens on a defined port, takes in requests from clients and turns to the CICS region and passes the requests

in. It consists of a program that is launched with supplied sample JCL, and a configuration file that contains

the information about what port to listen on, and how to connect to CICS.

Unit 4 - Accessing z/OS Data

Unit 4 - 26

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
26

The CTG Resource Adapter RAR File

TCPIPSERVICE and IPCONN …

The RAR (Resource ARchive) is the adapter in its installable packaging format. You use
the Admin Console to install that RAR file into the WAS runtime environment:

/usr/lpp/cicstg/ctgv80/deployable

cicseci.rar

cicseciXA.rar

Global transaction with WAS
z/OS and local EXCI, local

transaction otherwise

Display name

Point to where the
native code shared

object files are located

Before we get to the
definition of the Connection
Factories, let's take a brief
look at the definitions inside
of CICS to support IPIC

In CTG V8.1 these merge into one file

Global two-phase commit when
connecting to Gateway Daemon

on z/OS, or when using IPIC

The CTG Resource Adapter RAR file is shipped with the CTG product. When CTG is installed on z/OS you'll find

the RAR file in the /deployable directory under the installation root. Prior to CTG V8.1 there were two RAR files

-- one for non-XA connections, one for XA connections. Starting with CTG V8.1 they are combined into one RAR

file with both XA and non-XA support in the same file, with a new custom property indicating XA or not.

The RAR file is installed through the Admin Console by clicking on the "Resource Adapters" link, then the "Install

RAR" button, then pointing to the RAR file to install. The final step is to provide the definition knowledge of where

the CTG native code library is, which will be the /bin directory off the CTG installation root.

That's it ... a relatively simple process to install the resource adapter. This is typically done with a scope of "Node,"

which means you'd install the resource adapter across all nodes in which servers would need access to CICS.

The next step is to define the JCA Connection Factories to provide information about the connection to CICS.

Unit 4 - Accessing z/OS Data

Unit 4 - 27

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
27

CICS Definitions in Support of IPIC Usage

JCA connection factories …

Two elements to this -- the TCPIPSERVICE definition and the IPCONN definition. Values
you provide here are used in the JCA Connection Factory definition ...

IPCONN Definition

CEDA View Ipconn(IPCONX)

 Ipconn : IPCONX

 Group : IPICX

 DEScription :

IPIC CONNECTION IDENTIFIERS

 APplid : IPCONX

 Networkid : IPCONNET

 Host :

 (Mixed Case) :

 Port : No

 Tcpipservice : SRVTCPX

IPIC CONNECTION PROPERTIES

 Receivecount : 000

 SENdcount : 000

 Queuelimit : No

 MAxqtime : No

These values
are used on the

connection
factory

definition when
using IPIC to

connect to the
CICS region

TCPIPSERVICE Definition

CEDA View TCpipservice(SRVTCPX)

 TCpipservice : SRVTCPX

 GROup : IPICX

 DEScription :

 Urm : DFHISAIP

 POrtnumber : 10099

 STatus : Open

 PROtocol : IPic

 TRansaction : CISS

 Backlog : 00005

 TSqprefix :

 Host : ANY

 (Mixed Case) :

 Ipaddress : ANY

 SOcketclose : No

 MAXPersist : No

Definition of
the procotocl
for the service

This service is listening on port 10099 on
any of the TCP hosts defined to the

system on which the CICS region resides

The name of
the service

The JCA Connection Factory may now
be configured to communicate with
defined TCPIPSERVICE/IPCONN

Use of the IPIC protocol presumes there's a TCPIPSERVICE in the target CICS region to receive the IPIC calls.

This chart shows the TCPIPSERVICE and IPCONN definitions in use on the CICS region for the upcoming labs.

TCPIPSERVICE -- this defines the TCP port and host the service will listen on, as well as the protocol to be

used. You see the definition of IPIC as the protocol, a port value of 10099, and an indication that the host to

listen on is "Any," which means any of the defined TCP stacks on the z/OS system. At the top of the definition is

the name of the TCPIPSERVICE.

IPCONN --this defines a connection. We're highlighting two things here -- the pointer to the TCPIPSERVICE this

IPCONN is associated with, and the APPLID and NETWORKID for this IPCONN. The service name here must

match the name on the TCPIPSERVICE definition. The APPLID and NETWORKID are key values that get coded

on the JCA connection factory.

Let's see what the JCA connection factory definition looks like ...

Unit 4 - Accessing z/OS Data

Unit 4 - 28

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
28

JCA Connection Factories

CTG Gateway Daemon …

Connection Factories (CFs) provide the specifics for the connection to CICS:

CICS Transaction
Gateway (CTG)

Resource
Adapter

JCA
Connection
Factory

Application

The display name and the
JDNI name of this CF

From the installed
resource adapter page

Other custom properties exist ... these

are the key properties we'll focus on

IPCONN APPLID

IPCONN NETWORKID

tcp://gw_host local:

ssl://gw_host

gw_port

tcp://host:port CICS applid

ssl://host:port

IPIC To GW Daemon Local EXCI

Much like the definition of JDBC data sources, JCA connection factories are associated with the installed resource

adapter. If you go to the general properties page of the installed adapter, off to the right you'll see a link for "J2C

connection factories." Clicking on that link will take you to the panels to define the connection factory.

The first part of this is a set of names -- one is the display name used by WAS to display the CF on the Admin

Console. The other is the JNDI name that will be associated with this CF. Application resource references for

CICS are resolved to the JNDI name of the CF ... that's the mechanism for connection to the CICS region.

But the real specifics get defined as a "custom property" to the connection factory. There's a rather long list of

custom properties, but the ones of particular interest are shown on the chart. The values you code into each

depends on what kind of connection you wish to make to the CICS region. The chart shows a matrix of what to

provide into the various custom properties, depending on the connection you're wishing to make.

Note: black non-italic lettering indicates a keyword, blue italic indicates a value you supply.

● IPIC -- this is a direct connection using IPIC to a CICS region with a defined TCPIP service and IPCONN

definition. The CICS region may be on the same LPAR or a different LPAR from the WAS z/OS server. We

showed on the earlier chart the TCPIPSERVICE and IPCONN definitions in CICS so you could relate the

values there to the values to code into the custom properties.

● Connection to CTG Gateway Daemon -- this provides information about the host and port where the CTG

Gateway Daemon is listening. This may be on the same LPAR as the WAS z/OS server or on another LPAR.

Note: this defines the connection from WAS to the GW Daemon. The connection from the GW Daemon to

the CICS region is defined in the GW Daemon's configuration files.

● Connection to CICS region using local EXCI -- this is the case where the WAS z/OS server and the target

CICS region are on the same LPAR. Here all that's needed is the keyword local: (with the colon, that's

important) and the APPLID of the CICS region (not the APPLID of the IPCONN, that's different and is not used

when connecting using EXCI).

Unit 4 - Accessing z/OS Data

Unit 4 - 29

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
29

CTG Gateway Daemon

Resource failover/failback …

Here's a brief overview of the essential structure of the Gateway Daemon task:

CTGJOB
Sample JCL that launches
CTG Gateway Daemon

//CTGJOB JOB (0),MSGCLASS=X,CLASS=A,NOTIFY=&SYSUID,REGION=500M

//CTG EXEC PGM=CTGBATCH,

// PARM='/shared/cicstg/ctgv80/bin/ctgstart -noinput '

//STEPLIB DD DSN=CTGV8MT.SCTGLOAD,DISP=SHR

//STDENV DD DSN=USER1.WAS.CNTL(CTGENV),DISP=SHR

CTGV8MT.SCTGSAMP
Supplied sample library

CTGENV Member:
● Pointer to ctg.ini file used
● Pointer to Java installation
● Other definitions

ctg.ini File
● TCP information, including listen port
● CICS APPLID information if EXCI
● IPIC information is using IPIC to

connect to CICS region
● Other definitions

Consult the CTG InfoCenter for specifics on customizing CTG Gateway Daemon

The CICS Transaction Gateway Daemon is a long-running task started using a supplied JCL batch job. The JCL

has more to it than it shown on this chart ... what's shown here is the essential pieces we wish to illustrate.

● The CTG Gateway Daemon is started using a supplied CTG shell script launching program called CTGBATCH.

● A parameter points to where the ctgstart shell script file is located

● The STDENV DD card points to an environment member you customize. The sample library provides a

skeleton to use when starting out.

● In the CTGENV member are some key customization values, including a pointer to the ctg.ini file to be read

in, a pointer to where a copy of the Java SDK may be found, and a handful of other definitions.

Note: The CTG InfoCenter has full details on how to customize the CTGENV member and the ctg.ini file.

We won't supply that information here. The URL for the CTG InfoCenter was presented on the first page of

this section.

● The ctg.ini file is what determines the listener port for the Gateway Daemon and whether it'll use EXCI or

IPIC to the backend CICS region. If EXCI then you specify the APPLID of the CICS region; if IPIC then you
supply the host, port, APPLID and network ID of the IPCONN definition, much like you would do with a

connection factory using IPIC.

When all the configuration settings are made and the Gateway Daemon starts, it opens up a listener port on the

front end ... that's what WAS servers use to connect using ECI over the network. The Gateway Daemon then

uses either EXCI or IPIC to CICS region.

Note: there's a lot we're not covering with respect to the capabilities of the CTG Gateway Daemon. For instance,

we brushed right past security. There are ways to configure the CTG Gateway Daemon in a shared port, highly

available configuration. The CTG InfoCenter has all this information.

Unit 4 - Accessing z/OS Data

Unit 4 - 30

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
30

Resource Failover and Failback -- Work with CICS?

Messaging …

The resource failover methodology we explored for JDBC applies here as well, with one
notable exception -- automatic failback:

JCA
Connection

Factory

JCA
Connection

Factory

JNDI

eis/primary

JNDI

eis/alternate

CTG
Resource Adapter

CICS
Region

CICS

Region

alternateResourceJNDIName = eis/alternate

failureThreshold = 5

resourceAvailabilityTestRetryInterval = 10 seconds

Connection Pool Custom Properties

The same connection pool custom
properties that we discussed

earlier are applicable to the CICS
environment as well

The same mechanism for failover
applies -- getConnection()

failures triggers failover to defined
alternative connection factory

Test

The issue is the test connection ... at the present time the CTG resource adapter code "test
connection" process will always indicate a positive, even when CICS is not there.

Use enablePartialResourceAdapterFailoverSupport or disableResourceFailBack to
prevent failback polling. Then use MODIFY failback when you know CICS region is truly back.

A question comes up -- does the resource failover mechanism discussed for use with JDBC work with CICS

connections as well? And the answer is a qualified "yes."

CICS connections also maintain connection pools, and the connection pool properties we discussed earlier apply

to CICS connection pools as well. It is quite possible to define two connection factories -- one primary, one

alternate -- and use the new custom properties to define the failover properties. The same mechanism would

trigger the failover: a number of failed getConnection() requests.

The "qualified yes" answer comes in with the automatic failback. WAS uses a "test connection" method to

determine if the primary resource has returned. The "testRetryInterval" property determines how frequently the

test connection is performed. With CICS, the CTG resource adapter code will respond affirmatively in all cases,

which would result in an attempted failback even if the primary CICS wasn't there. So automatic failback should

not be used.

Instead, disable automatic failback ... using either the "enablePartial" property or the property to disable failback

altogether. This will allow failover, but failback will not be attempted. You may still achieve failback, but it'll be

manual ... using the z/OS MODIFY command to failback the resource. The z/OS MODIFY will carry out your

instructions without checking first to see if the resource is really there. Therefore, you should be certain the

primary has indeed returned before issuing the MODIFY.

Unit 4 - Accessing z/OS Data

Unit 4 - 31

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
31

JMS and Messaging
With a focus on MQ

Unit 4 - Accessing z/OS Data

Unit 4 - 32

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
32

The Difference Between JMS and Messaging Transport

Application types …

JMS is a messaging interface while MQ is an example of a messaging transport that
may be used under the interface:

Java Messaging Service (JMS) Interface

API API API API API API

Messaging
Application

Messaging
Application

Open standards above this line ...

applications are unaware of the
underlying message transport

Vendor-supplied transports
below this line

Messaging Transport
Middleware that implements and manages

the message queues and the movement of

messages to and from applications

JMS Interface Maps To ...

IBM WebSphere MQ
The focus of this unit. An existing MQ
infrastructure may be used as the transport
under the JMS interface

WebSphere SIBus
The built-in all-Java messaging transport
mechanism of WebSphere Application Server

Other Vendor Transports
WAS, as a Java EE server runtime, supports
other vendor transports as well

The topic of messaging can be a little confusing at first because there's some terminology used that may not be

properly understood. In WebSphere Application Server -- in fact, in any Java EE runtime -- messaging

applications make use of something called "JMS" to handle the messaging.

Here's the key -- JMS itself is simply a programming interface. JMS itself does not have queue managers or

anything that physically handles the messages. JMS relies on an underlying "transport" to do that. JMS is simply

a programming interface that applications use. JMS then turns and hands the message off to the transport that is

defined "below" the JMS layer.

What serves as the "messaging transport" is really up to you -- you define this as part of the setup for messaging

in your WAS runtime environment. Your choices are IBM WebSphere MQ, the built in "Service Integration Bus"

(SIBus) of WAS, or some other vendor messaging transport.

The JMS and Java EE environment is designed to "plug in" a transport below the JMS interface. So much of our

ensuing discussion here will be to describe how that's done. Our specific focus will be on WebSphere MQ since

that is a very prevalent messaging transport.

Note: as to whether you should use MQ or the built in SIBus, we prefer to frame that discussion like this -- if you

have MQ and know how to use and manage MQ, then use MQ. We see little reason not to make use of a

messaging infrastructure that serves your business well. If you don't have MQ today then the SIBus may well

serve your needs.

Unit 4 - Accessing z/OS Data

Unit 4 - 33

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
33

Types of Messaging Applications

Key concepts …

When discussing JMS configuration within WebSphere Application Server, it's helpful
to keep straight three basic types of messaging applications:

Message Driven Bean (MDB)

Application A

Queue

Application B
Put

Get

Message received!

"Activation Spec" defined to
automatically retrieve messages

Receipt of a message in the assigned queue
triggers a process to automatically get the
message and invoke the Java bean

Pub / Sub

Application A

Queue

Pub

Subscriber

Subscriber

Subscriber

Get

Applications "subscribe" to a queue.
Provider "publishes" messages to the queue,
and subscribers (one to many) pull from the
subscription queue

Application responsible for pulling
any messages from the queue

Point-to-Point (or PUT/GET)
Very common model where an application
puts a message on a queue and another
application pulls the message Application A

Queue

Application B
Put

Get

WP101792TechDocs

We'll soon see some terminology used that refers to different programming models for messaging applications.

Therefore, it's worth investing a little time to review what those application designs are. There are three primary

models that are used:

Point-to-Point -- or sometimes referred to as "simple PUT/GET" (that language goes back to the original MQ

programming interface that used the verbs PUT and GET for messages) ... this model assumes a queue is used

to exchange messages between two applications. One application puts a message on a queue, the other

application periodically checks to see if a message is present and pulls the message off the queue. This is a

very common application use for messaging.

Message Drive Beans -- on the surface this looks like point-to-point, but with this key difference: when a

message is placed on the queue the receiving application gets a signal that a message is present. The

application then "wakes up" and picks the message off the queue. In the Java EE world the target program is

called a "message driven bean" because processing is "driven" by the arrival of a message on the queue that is

being watched. In WAS V8 the use of MDBs implies the definition of an "activation spec". The Techdoc

WP101792 provides a write-up and code samples for the defining and use of activation specs for MDBs.

Pub / Sub -- this stands for "publish and subscribe" and refers to a model where one application produces a

message and some number of other applications -- between one and n -- subscribe to the message queue and

receive whatever message content is placed there. The queue is referred to as a "topic queue." The key with

this design is that the producer of content does not know nor care who is subscribed ... it simply knows that when

content is available to be "published" it does so by placing that content on the queue. The subscribers -- one to
many -- then pull a copy of the message.

Unit 4 - Accessing z/OS Data

Unit 4 - 34

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
34

Key Concepts of WAS and MQ Messaging

Bindings, client …

Some of the concepts are similar to JDBC and JCA, but there are some differences:

MQ JMS
Provider1

WAS z/OS

Queue
Connection

Factory

Queue

Queue

Application

JNDI

JNDI

JNDI

WebSphere MQ

Queue Manager
(or Queue Sharing Group)

MQ Queue

MQ Queue

2

3

1 The MQ JMS Provider supplies the code needed to access MQ
Unlike JDBC or JCA, the provider code is supplied with WAS itself. It does not need to be installed.

2 Queue Connection Factory provides specifics about connecting to MQ
Typically a Queue Manager, but may be a queue sharing group. Two modes: binding and client.

3 Queue definitions provide abstraction of physical queue in QMGR
Applications may require multiple queues so it is common to have multiple JMS queue definitions

Now it's time to take a look at some key concepts related to WAS JMS with MQ as the message transport. Our

focus in on the definitions in WAS itself that relate to MQ as the transport mechanism under the JMS layer.

1. JMS Provider -- this is the code that makes access to MQ possible. It is analogous to the JDBC Provider

and the JCA Resource Adapter. But unlike those two, the MQ Provider code is not something you install or

configure into WAS ... it comes with WAS. It is simply there to be used. WAS maintenance updates the MQ

provider code as needed.

2. Queue Connection Factory -- this is a definition that provides WAS knowledge of which MQ queue manager

(or queue sharing group) you wish to connect to.

3. Queue -- this is a definition in WAS that provides an abstraction of a real queue in MQ. The queue definition

in WAS is simply a name that resolves to a real queue name in the MQ queue manager named by the queue

connection factory.

The application we'll use in the lab has a <resource_ref> for both the connection factory and the queue. It

does a JNDI lookup of both, which connects the application to the definition in WAS. The specifics defined to the

queue connection factory are what tells WAS which MQ queue manager to use; the specifics in the queue

definition are what tells WAS what physical queue on that queue manager ot use.

Unit 4 - Accessing z/OS Data

Unit 4 - 35

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
35

Bindings Mode and Client Mode

JMS MQ provider …

The "local" and "remote" theme is carried to MQ connections as well ...

WebSphere
Application
Server z/OS

WebSphere
MQ for z/OS

When configuring
client you'll need to
know the host and
port of the MQ
channel initiator as
well as the Server
Connection Channel
to use when
connecting

Queue Connection
Factory

Client
Network

WebSphere
MQ Channel
Initiator

Server Conn Channel

Queues

Cross Memory

Queue Connection
Factory

Bindings

MQ Native Libraries

When configuring bindings you'll need to provide the path to the
native shared object libraries as well as STEPLIB or LINKLIST to
the SCSQANLE, SCSQANLU and SCSQAUTH data sets

One of our common themes is the choice of a cross-memory connection or a network-based connection. We saw

this with JDBC (Type 2 vs. Type 4) and we saw this with CICS (local EXCI vs. gateway or IPIC). MQ has the

same -- bindings mode (cross-memory) and client mode (network).

Bindings mode uses the native interface of MQ to access the queue manager co-located on the same LPAR.

That means you'll need to tell WAS about the native shared object library (a path in the MQ installation file system)

and tell WAS about the native module libraries. The native module libraries may then be STEPLIBed to the

servant region or put in Linklist. On our lab system they are in Linklist.

Client mode does not require access to the native libraries. The connection to the defined MQ queue manager is

across a network connection ... either on the same LPAR or another LPAR. When defining this type of connection

you'll need to know the host and port of the MQ channel initiator as well as the Server Connection Channel to use

to access the QMGR.

Unit 4 - Accessing z/OS Data

Unit 4 - 36

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
36

Configuring the JMS Provider

Queue connection factories …

The provider is very simple to configure ... the key is the connection factories and the
queue definitions are access from the provider properties screen:

Pick the provider link associated
with the scope you wish ... cell,

node or server level

If you plan to use bindings mode

then specify the path to the
native libraries for MQ

Scope you selected

InfoCenter indicates not to use
this "update" button unless

directed by IBM support. Normal
WAS maintenance brings in

updates to JMS MQ provider

Specific definitions
that will fall under
the JMS provider for
the scope you chose

As we just mentioned, the JMS Provider code for MQ is provided with WAS. You don't need to "install" it. You do

however have to tell WAS which JMS provider you plan to use -- MQ or the built in "Default Messaging" -- and tell

WAS what "scope" you want the provider to exist at.

On the Admin Console under "JMS" you'll find a link for "JMS Providers". When you click on that link you'll see a

panel that shows all the JMS providers at all scopes. The page looks a little odd at first because of the layout, but

once you realize it's showing "all providers, all scopes" it starts to make a bit more sense. Pick the MQ provider at

the scope you desire.

On the general properties for the MQ provider there's a field for the "Native library path" -- this, along with the MQ

module libraries, provides the ability to configure Bindings mode. This field is asking for the shared object files in

the file system, which would be the /java/lib directory in the MQ install path.

There's a button on this page labeled "Update resource adapter." Be aware the InfoCenter suggests this not be

used unless directed by IBM support. Updates to the MQ provider come with WAS maintanance. This button

would be used when IBM support has an updated adapter it wishes you to try.

Off to the right you'll see a list of "Additonal Properties," and under there you'll see some of the things we spoke of

earlier -- queue connection factories, queue definitions, activation specs, topic queues. Our focus here will be on

the queue connection factory definition and the queue definition.

Unit 4 - Accessing z/OS Data

Unit 4 - 37

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
37

Queue Connection Factories

Queue definitions …

These provide the information on how to connect to the MQ queue manager:

Pub-Sub Topic
or Point-to-Point

Point-to-Point

Pub-Sub

Provide a display name
and a JNDI name

Provide the name of
the QMGR or the QSG

For client ... simple
host:port information

For client ... connection name list:
'host1.com(1234),host2.com(4321)'

For client ... server
connection channel to use

or

If Bindings ...
Then just the Queue Manager name is needed.
The host and port fields are grayed-out.

If Client ...
Choose either host/port or connection list, then
supply the server connection channel information

If Bindings, then client ...
Choose either host/port or connection list, then
supply the server connection channel information

One of the links under "Additional Properties" is "Queue connection factories" and that will be our focus. Two

other connection factory links are present ... one is a combined point-to-point and pub-sub link, the other is for

pub-sub only. Queue connection factories are used for point-to-point and MDB applications, and as such is a

frequently used configuration with WAS and MQ.

When you click on that link you'll be presented with two fields asking for the display name and the JNDI name for

the queue connection factory. This is just like we've seen before for JDBC data sources and JCA connection

factories. One name is used by the Admin Console to display the resource; the other name is used by

applications to look up the resource and make the connection.

Since this is an MQ connection factory WAS knows to ask you for the Queue Manager name or the Queue

Sharing Group name. (Queue Sharing Groups are a means of having multiple Queue Managers on Parallel

Sysplex share a set of common queues within the Sysplex Coupling Facility.)

The next configuration step asks you for how WAS is to make the connection. This is the choice between

Bindings or Client ... with a third twist: bindings, and if that doesn't work then client. (In a sense this is like the

resource failover we've seen before.)

If you select anything other than Bindings then you have a choice for supplying the client mode specifics. One

option is to supply a single host and port specification. The other option is to supply a connection name list with a

format as shown on the chart.

Whether you chose the single host and port or the connection name list, in either case you'll then need to supply

the MQ server connection channel this client will use when it accesses the Queue Manager. This is a value you'd

get from your MQ administrator.

Unit 4 - Accessing z/OS Data

Unit 4 - 38

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
38

Queue Definitions

Application JNDI lookups …

You would have as many queue definitions as you have queues in MQ that you wish
applications to use:

The JMS provider
under which this queue

definition will exist

The display name and
the JNDI name of this

queue definition

The actual queue name
as it exists in the MQ

Queue Manager
Provide the Queue

Manager or Queue Sharing
Group where the queue is

physically defined

Messaging applications make use of queues, and rather than hard-code the actual queue names in the application

(Java EE is all about abstracting such things), you define "queues" in WAS that then resolve to the actual queue

name in the QMGR specified on the queue connection factory.

Here again, a display name and a JNDI name is called for. Further down you specify the actual queue name as it

is defined in the QMGR.

Unit 4 - Accessing z/OS Data

Unit 4 - 39

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
39

Application Access to JMS Resources
This involves mapping the <resource-ref> tags in the application deployment
descriptors to the JMS definitions you've created:

<resource-ref id="ResourceRef_1074045272521">

 <res-ref-name>jms/QCF</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

</resource-ref>

<resource-ref id="ResourceRef_1074045272531">

 <res-ref-name>jms/IncomingQueue</res-ref-name>

 <res-type>javax.jms.Queue</res-type>

</resource-ref>

<resource-ref id="ResourceRef_1074045272551">

 <res-ref-name>jms/OutgoingQueue</res-ref-name>

 <res-type>javax.jms.Queue</res-type>

</resource-ref>

SimpleJMS.ear
Messaging App Used in Upcoming Lab

web.xml

Admin
Console
prompts

you to map
resource
refs to the
JMS JNDI
definitions
created

In our earlier discussions of JDBC and JCA we saw that the application did a JNDI lookup of the data source or

connection factory. That provided the application the connection specifics it needed to access the DB2 instance or

CICS region it needed.

For a messaging application we have the potential of requiring several JNDI lookups -- one for the queue

connection factory (which tells which MQ Queue Manager to use), and one for each queue the application uses.

That's what you'll see in the upcoming lab. The application has three <resource-ref> definitions that need

resolving when the application is deployed -- two queue resolutions and one queue connection factory resolution.

End of UnitEnd of Unit

