
Unit 1a - Overview

Unit 1a - 1

© 2013 IBM Corporation
IBM Advanced Technical Skills

WBSR85
WebSphere Application Server z/OS V8.5

Unit 3 - Server Models
WP101740, WP102110TechDocs

WebSphere Application Server V8.5 for z/OS

WBSR85
Unit 3 - Server Models

Unit 3 - Server Models

Unit 3 - 2

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
2

This page intentionally left blank

Unit 3 - Server Models

Unit 3 - 3

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
3

Overview

Traditional WAS z/OS model ...

With WAS z/OS V8.5 we now have two server models to choose from:

Traditional Multi-JVM Model

Controller
Region

Servant
RegionsWLM

"Application Server"

● Two or more JVMs make up an
application server instance

● CR does the request handling, SR
hosts the applications

● Full Java EE server runtime

● Administration through DMGR and
Admin Console as seen in Unit 2

● Includes "Granular RAS" function
which we'll explore in this unit

Liberty Profile Model

Liberty
Profile
Server

Instance

"Application Server"

● One JVM makes up an application
server instance

● Lightweight, composable and
dynamic updates

● Web applications at this time

● Simple configuration and
administrative model

● Not part of the traditional WAS cell or
administrative model

With WAS z/OS V8.5 we now have two "server models" to consider -- the traditional model with the multiple JVMs

and the full set of Java EE functions, and the new "Liberty Profile" model which is intended to offer a lighter, more

dynamic alternative when the traditional model is deemed more than adequate.

In this unit we'll cover both, starting with the traditional model, which will include a discussion of work distribution to

multiple servant regions, WLM service and reporting classes, the XML classification file and the V8 function called

"Granular RAS," which allows functional behavior to be driven down to the request level. Then we'll transition to

the Liberty Profile model.

Unit 3 - Server Models

Unit 3 - 4

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
4

Traditional WAS z/OS
The full Java EE, multiple-JVM model

Unit 3 - Server Models

Unit 3 - 5

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
5

The Essential Structure of WAS z/OS "AppServer"

Control Region Adjunct …

Earlier we spoke of an application server consisting of a "Control Region" and one or
more "Servant Regions"

Control
Region

IBM Java
Code

IBM Native
Code

z/OS Workload
Manager

zWLM

Request

Request

Request

WLM Work
Queues

Classification

Application

Server

Listener
Ports

Address Space

Servant
Region

IBM Native Code

IBM Java Code

Your Java

Applications

Address Space

Servant
Region

IBM Native Code

IBM Java Code

Your Java

Applications

Address Space

Queued

Dispatched

Request

1

2

3

4

5

6

See speaker notes for an explanation of

each numbered block in the picture

This picture represents the essential architecture of a WAS z/OS "application server," which unlike distributed

WAS is not one JVM but multiple. The following list corresponds with the numbered blocks on the chart:

1. The "Control Region" (or "CR" for short) is a z/OS address space that contains about half native code and

half Java code. It serves as the front-end handler of inbound work. Your applications do not run here. Work

is received here, processed, then passed back to the z/OS address space where your applications do run,

which is the servant region.

2. The "Servant Region" (or "SR" for short) is mostly IBM Java code with a small slice of native code. This is

where your applications will run. When you deploy an application to the "application server," WAS z/OS

makes sure the application binaries end up in this JVM.

3. Between the CR and the SR are a set of WLM work queues. When work comes into the CR and gets

processed, the CR places the work on a work queue and from there it gets dispatched to a servant region.

Work is pulled from the queue by the servant region; it is never pushed into a servant. That means the

servant will consume only as much work as it can process. Temporary excess work queues up and then gets

worked down.

4. Under the CR sits z/OS Workload Manager, or "zWLM" for short. zWLM is a key component of the z/OS

system. It manages work and work priorities across all the jobs and tasks running on the z/OS system. One

of the roles zWLM plays is to classify work so zWLM can understand the relative priority of that work to other

work it sees on the system. The WAS z/OS CR makes use of the zWLM APIs to classify the work and place

it on a work queue. We have much more coming up on classification.

5. As noted earlier, work is queued to a work queue, then dispatched to a servant where your application runs

that work.

6. WAS z/OS has the ability to host multiple servant regions behind the CR to act as a kind of "vertical cluster"

to the CR. Additional servants may be configured ahead of time or they may be dynamically started by zWLM

based on workload seen by zWLM. More on this coming up as well.

Unit 3 - Server Models

Unit 3 - 6

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
6

Detour: the "Control Region Adjunct"

Three ways to get multiple servants …

People familiar with WAS z/OS often ask: "What's the Adjunct Region used for?"

Control
Region

Servant
Region(s)

WLM

Control
Region
Adjunct

Like servants, this is started automatically by WLM

Unlike servants, there is either 0 or 1 of these

Region is related to messaging:

● If "Service Integration Bus" (SIBus) configured and server
is hosting a "messaging engine" on the bus

● If server has "Activation Spec" defined and used by
deployed application
Which may listen on MQ or SIBus, so CRA is not related to just SIBus work

We won't focus on the CRA in this workshop. This chart is included just to let you
know what it's used for and under what circumstances you would see it start

Another address space you may see is something called the "Control Region Adjunct," or "CRA" for short.

This region is used for messaging. It's in one way like servant regions in that it's started automatically by WLM

when the control region starts, but unlike servant regions there is either zero or one of these. There can't be more

than one for any given application server.

The CRA is started by WLM when one of the following conditions is met:

1. You have configured a "Service Integration Bus" (otherwise known as the SIBus) and an application server is
connected to the bus. By doing that you tell WAS z/OS that the server will host a "messaging engine." The

CRA is used as the runtime region in which the messaging engine function resides. So a server added to an

SIBus signals to WAS z/OS to fire up a CRA so the messaging engine has a place to run.

2. You have configured an "Activation Spec" (as opposed to the older-style "Listener Port") for Message Driven

Bean (MDB) applications, and there's a MDB application deployed that references the defined Activation

Spec. That tells WAS z/OS that it needs to start the CRA so the Activation Specification function has a place

to operate.

Absent those two conditions, the CRA will not be present. With one (or both) of those conditions, the CRA will

appear when the server is started.

Unit 3 - Server Models

Unit 3 - 7

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
7

Three Ways to Achieve Multiple Servant Regions

z/OS and starting servant …

There are three ways to achieve more than one servant region for a given appserver:

Let WLM dynamically start more servants

Based on volume of work

Based on WLM Service Class assignments

Use MODIFY to dynamically change minimum

F Z9SR01A,WLM_MIN_MAX=3,3

Controller JOBNAME MIN,MAX

● "Multiple Instances Enabled" must already be checked

● If MODIFY minimum > configured minimum then servant
is started

● If MODIFY minimum < configured minimum then excess
servants will be stopped when all work flushed

Configure Minimum > 1
"Multiple Instances Enabled"

must be checked in all cases to
achieve multiple servants

Configure "Minimum"
at some number

larger than 1. When
the server starts you'll
achieve that number

of servants

The default number of servant regions within any given application server is one. But there are three ways you

may achieve multiple servant regions.

The first is to check the "Multiple Instances Enabled" checkbox and configure a minimum number greater than

one. When the application server is started the next time your configured minimum servant regions will be started.

The second way is to use the z/OS MODIFY command to dynamically increase the minimum and maximum

numbers. For this to work the "Multiple Instances Enabled" checkbox must have been set. Suppose your server

was running with MIN=1 and MAX=3 and at the present time you had only one servant but wished for all three to

be running. Issuing the MODIFY command to change the minimum tells zWLM to start additional servants. The

reverse is true as well -- MODIFY to a minimum number small than presently running and zWLM will stop servants

when all the work in those servants has been flushed.

The third way is to allow WLM to dynamically start more servants. Again, "Multiple Instances Enabled" must be

checked and the configured maximum servants must be more than what's presently running. Then zWLM may

start additional servants based on either the volume of the work or the arrival of a Service Class otherwise not

placed in a servant. The role of zWLM Service Classes in all this will be explained in more detail in a bit.

Unit 3 - Server Models

Unit 3 - 8

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
8

Servant Started by WLM Based on WAS Request

Work distribution …

This chart summarizes the relationship between the START command for the CR and
how the SR is started automatically:

S Z9ACRA,JOBNAME=Z9SR01A,ENV=Z9CELL.Z9NODEA.Z9SR01A
JCL Proc

We recommend this be
equal to server SHORT Cell SHORT Node SHORT Server SHORT

You issue control region START from MVS console Or Start Server from

Admin Console

WAS z/OS then works with WLM to start configured servants

This is the WLM
dynamic application
environment WAS

uses to interact with
WLM and start the

servant region

Determines the number
of configured minimum

servant regions

JCL Proc

Server SHORT
name with "S"

appended

Server
SHORT name

START command passed into WLM dynamic
application environment and servant started

The Control Region is something you start with a z/OS command; the Servant Region is something zWLM starts

automatically. (In addition to issuing a z/OS command, it's possible to start WAS z/OS control regions through the

Admin Console "Start Server" button, or with the startServer.sh shell script. In both cases what ends up

happening is WAS z/OS issues the z/OS START command like what's shown above.

The CR START command has the format as show -- START <proc>, then a JOBNAME value, then an ENV=

string that helps WAS z/OS know which of potentially many different servers you want started. The ENV= string

consists of the cell short name, the node short name and the server short name. That's a unique identifier for

WAS z/OS and using that it can start the specific server you request. The JOBNAME value can be anything you

wish, but we recommend it be equal to the server short name.

The servant region is started automatically using a combination of a "WLM dynamic application environment" and

a configured START command for the servant. The dynamic application environment is an API to zWLM that

allows for zWLM to start things on behalf of applications. In this case the CR is what's requesting the start of the

SR through the zWLM dynamic application environment API. The WLM dynamic application environment name is

configured in WAS z/OS as the "Cluster Transition Name." There's a reason for that ... but it's somewhat obscure

and it's best just to leave it at that -- Cluster Transition Name = WLM dynamic application environment name.

The next thing it does is determine how many servant regions should be started initially. This is the "Minimum

Number of Instances" number. The next thing it does is to locate the START command for the servant from the

configuration files. The START command is similar to the CR except it uses a different JCL start procedure, and

the JOBNAME and server short names are passed in as variables. Further, the JOBNAME value is appended
with an "S" to indicate a "servant."

With the servant START command issued by zWLM the servant region(s) come up and when all the dust settles
and the CR and its SRs are started then WAS z/OS knows the overall application server itself is started as well.

Unit 3 - Server Models

Unit 3 - 9

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
9

In General, WLM will Favor One Servant
This is behavior many don't expect ... when multiple servants are present the work
tends to end up in one but not the other:

Stateful "round-robin" …

Control
Region

zWLM

Servant
Region

Servant
Region

Most or all work
will show up in
one servant region

You may see some
"spill over" into the
other if work spike
exhausts threads in
first servant and WLM
decides it's better to
dispatch to second
than hold in queue

WLM's default is to take "first available" and once chosen, stick with it

This behavior makes some sense. If all work can be handled by one
servant, why not keep two swapped in and active when one will do?

There's an environment variable to approximate "round-robin" ...

Imagine a relatively simple two servant configuratino as shown. You might expect that the work would be evenly

distributed between the two servers, but that's not the case. What you'll find is that WLM will favor one servant

over the other. You may see all the work ending up in one servant and none in the other if WLM determines one

server is sufficient. Or you may see a little "spill over" into the second servant. But in general, WLM will favor one

over the other.

WLM's default behavior is to seek the first available servant and stick with that until it has reason to believe it must

bring another one into play. This makes some sense if you think about it -- if you have two swappable address

spaces and the work flowing in can be handled entirely by one address space, why keep both active and "hot"

when one will do?

But as we said, most expect to see a balanced distribution between the two servant regions. This can be

accomplished (to a degree) with an environment variable that will seek to balance the work. However, the

environment variable is or stateful work. Let's see what that variable is ...

Unit 3 - Server Models

Unit 3 - 10

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
10

Environment: wlm_stateful_session_placement_on
This environment variable, when set to 1, will tell WLM to try to balance affinities across

the available servants. It does not round-robin stateless work

WLM-less queuing …

Control
Region

zWLM

Servant
Region

Servant
Region

2

2

Won't necessarily
be exact ... but it
will be closer to
"round robin"

than without the
environment
variable

Affinity
counts

Try this with stateless work and you'll find it
tends to look like previous chart ... work into
first servant and occasional spill to others

urun_rproperty_custpropertiesInfoCenter

The environment variable wlm_stateful_session_placement_on tells WLM to try to balance affinities

across available servant regions. An "affinity" to a servant region is created when the application creates some bit

of data that is specific to the requesting client. The most common example of this is the HTTP Session Object,

which many applications use as a means of maintaining some awareness of the client's "state" between requests

that flow up from that client. The most common example cited is the "shopping cart" ... when a person is using

some online shopping application an HTTP Session Object is often created and maintained to keep the user's

shopping cart contents in an in-memory object.

Note: WAS z/OS and zWLM maintain the "affinity routing" between the CR and the SR. You do not need to worry

about this. It's taken care of automatically.

This environment variable tells WAS z/OS to try to balance these affinities between the available servant regions.

So if you have a stateful application and you turn this environment variable on, you'll see a rough balancing

between the servant regions.

But, if you were to use this environment variable with a stateless application, you'd find that WAS z/OS and z/WLM

would go back to favoring one servant over others. That's because there's no affinities to balance.

If you have a stateless application and you wish to distribute the work across available servants then the way to go

is with WAS z/OS internal queuing. This takes WLM out of the picture and a more true "Round Robin" is possible.

Unit 3 - Server Models

Unit 3 - 11

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
11

Round Robin and WLM-less Queuing
For cases where you want to control work distribution to multiple servants, consider
WLM-less queueing ... uses WAS queues, WLM plays minimal role

WLM start servants? …

Notes:
● Stateless or stateful applications ... both work with this
● WLM will still maintain minimum and restart failed
● WLM will not start additional servants
● WLM will still classify work, but it will not get involved in placement
● This works best when all the work in the server has the same Service Class

server_use_wlm_to_queue_work

server_work_distribution_algorithm

Two environment variable controls:

0

0 | 1 | 2

0 - Hot Thread
WAS looks for first available thread starting with first
servant. First servant utilized the most, then second, etc.

Control
Region

zWLM

Servant
Region

WAS internal
queues

Servant
Region

Servant
Region

1 - Round Robin
True round robin. If thread not available in targeted
servant then work gets put into servant queue and waits
for thread in that servant to free up.

2 - Hot Robin
Round Robin with a twist: if thread not available in
targeted servant, then work put in queue available to all
servants. First servant to free a thread gets work.

urun_rproperty_custpropertiesInfoCenter

Because of this desire to truly round-robin stateless work, there's a function in WAS z/OS to take WLM out of the

middle and use a set of internal work queues instead. Some notes on this:

● This is configurable down to the server level, so you may have some servers doing this and some servers

remaining with WLM

● This will work with stateful applications as well. Affinities are established and honored. It's just WLM isn't

involved in that.

● If you use this feature you should understand that WLM will not start additional servants. It'll restart failed

ones but not start additional ones.

● There's still work classification going on, but in this case WLM stays out of the placement of that work. To

WLM it looks like the servants aren't doing anything. They are, of course ... it's just that WAS is taking care of

it rather than having WLM take care of it.

● Two environment variables -- one to take WLM out of the mix, one to indicate the work placement model.

● Three options -- Hot Thread, Round Robin and Hot Robin.

Hot Thread - WAS looks for first available thread staring in first servant. If the work can be handled with the

threads in the first servant, that'll be the only servant used. Work spills to the second only if there are no
threads available in the first at the time of request arrival.

Round Robin - True round robin format. Work is placed on the queue of the next servant in line. If there's no
thread currently available in that servant the work is queued and it waits for a thread to open. This option will

result in the most even distribution of work.

Hot Robin - WAS works around the circle of servants in round robin fashion. If a work request is targeted for
a servant and that servant does not have an available thread at that moment, then WAS puts the work on a

queue that's available to all servants. The first servant to have a thread open up gets the work. On average

this should result in fairly even distribution. The objective is to round-robin as much as possible but leave

open the option to flow work to a servant that can do the work.

Unit 3 - Server Models

Unit 3 - 12

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
12

Will WLM Start Servant for Spike in Work?
Yes ... again provided the MAX value has not yet been met. If incoming work can't meet
goals with one servant, another started:

Essentials of classification ...

Control
Region

zWLM

Servant
Region

Servant
Region

Notes:
● WLM uses very sophisticated algorithms ... exactly when it will start the next
servant region is not always easy to predict. Not based on simple rule of work
queue depth.

● WLM will shut down extra servant if not needed, but it's very conservative about
eliminating resources once created. You may MODIFY the MAX down to close
unneeded servant regions if you wish.

● When second servant is up the work is not necessarily distributed evenly as we
just saw

● If you're using WLM-less queueing then servant will not be automatically started

Multiple instances
enabled and maximum

not yet reached

If we go back to the case where WLM is in the mix (in other words, the WLM-less queuing method we just spoke

of is not configured), then WLM can dynamically start a servant when the work exceeds the ability of the available

servants to process the work. But here we have to caution you -- it may not take place when you think it would.

When WLM might start a servant region is based on a set of WLM algorithms that tries to take into account the

work facing a server and balance it against the "cost" to start up an additional resource. If the spike in work is very

short in duration then WLM will most likely not start an additional servant. WLM is a bit cautious about firing up

address spaces ... it wants to first see if the work spike is more than just short-term temporary. So the algorithm is

more than merely the depth of the queue between CR and SR.

On the flip side of this ... if WLM sees a servant that's no longer needed it can shut that servant down, but again ...

it's cautious about this, perhaps more cautious with eliminating resources once started than with starting them in

the first place. If you have a servant you think is not needed and you'd like to eliminate it, you can MODIFY the

maximum value so it's lower than the currently started servants. This sends a signal to WLM to close a servant. It

will do so when it sees all the work is flushed out of that servant.

Unit 3 - Server Models

Unit 3 - 13

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
13

The Essentials of WLM Classification

Service and Reporting classes ...

All WAS z/OS requests get classified. How that's done depends on how the "CB Rules"
are coded in WLM:

 --------Qualifier-------- -------Class--------

Action Type Name Start Service Report

 DEFAULTS: CBCLASS CBREPT

 ____ 1 CN Z9* ___ CBCLASS CBREPT

 ____ 2 TC Z9DEFLT ___ CBCLASS Z9REPTD

 ____ 2 TC Z9TRANA ___ Z9CLASSA Z9REPTA

 ____ 2 TC Z9TRANB ___ Z9CLASSB Z9REPTB

 ____ 2 TC Z9INT ___ Z9CLASSB Z9REPTI

Action Type Description

 __ CB WAS classification rules

 __ CICS CICS classification rules

 __ DB2 DB2 classification rules

 __ DDF DDF classification rules

 __ IMS IMS classification rules

1. Policies

2. Workloads

3. Resource Groups

4. Service Classes

5. Classification Groups

6. Classification Rules

7. Report Classes

TC stands for Transaction Class
which is what gets passed in if
there is a matching rule in the
WLM Classification XML file

CN stands for Collection Name,
which equates to Cluster

Transition Name for WAS z/OS

In the absence of any
specific rule that

matches, the default
service class and

reporting class applies

As we mentioned earlier, all work gets classified by WLM. Now the question is what WLM uses to know how to do

that classification. And the answer is rules found under the "CB" classification rule type.

Within the CB type classification rules there's a qualifier type of "CN." CN stands for "Collection Name" and that

refers to the "Cluster Transition Name" for a server. In this workshop the servers we use all start with the letters

"Z9," which matches the rule shown here. So, in the absence of any transaction class information work in the Z9

servers will carry a Service Class of CBCLASS and a reporting class of CBREPT.

Imagine the Z9* rule was not there ... what then? If no rule matches then WLM falls up to the "DEFAULTS"

specified at the top. In this example it's the same as the rule for Z9* ... CBCLASS and CBREPT.

The TC qualifier type refers to "transaction class" information passed to WLM by the server. The only way TC

information is passed to WLM is when the XML classification file is in effect. We'll talk about that next. But here's

a hint -- the XML classification file provides a way to identify work -- for example, with a URI matching pattern --

and then pass a transaction class name into WLM based on that.

If a TC is passed in, and it matches a rule, then that work will carry the associated service class and reporting

class coded for that rule. In the example above you see that TC is subordinate to the CN ... which means the rule

here is really "If CN=Z9* and TC=<tc_name>." It is possible to have TC= be a first-level rule so the match is on

the TC name only with CN not playing a part. This example shows TC as a sub-rule under CN.

This is how different work within the same server might carry different service classes or different reporting

classes. The XML classification file contains rules that map requests to transaction classification names. Those

names are passed into WLM. WLM attempts to match them to TC= rules. If a match is found, then the

associated service class and reporting class is assigned.

Unit 3 - Server Models

Unit 3 - 14

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
14

WLM Service Classes and Reporting Classes

XML classification file ...

Service Classes are what WLM uses to assign priorities and manage work; Reporting
Classes allow WLM to report on resource usage for specific work:

Service Classes

● A grouping of work WLM uses to
understand relative priority, one

group vs. others

● Service Classes carry priority goals:
Response Time -- X% of work completes within Y
amount of time

Velocity -- a relative measure of how long work may
wait for resources

Discretionary -- work that is of lower priority and may
be serviced when system has resources to do so

● It is possible to have work within a

server be assigned separate Service
Classes and have WLM manage that
work with different priorities

● Assigning separate service classes
requires the XML classification file

Reporting Classes

● A grouping of work WLM uses
collect and report system resource

(GP, zIIP, zAAP, etc.) usage statistics

● This is perhaps the most common
reason to use the XML classification

file ... to assign separate reporting
classes for different work so usage
statistics can be collected and
reported

XML classification file used

Unique TC values for work to be reported separately

One Service Class for all classified work ...

... But different reporting classes assigned to each

The previous chart had two terms used that requires a bit of explanation to those not already familiar with them --

Service Classes and Reporting Classes. Both are related to z/OS WLM and how it operates.

Service Classes are a way WLM groups work so it may manage system resources so the group gets what it

needs to meet the goals defined for that service class. So think of a "service class" like a bucket in which work is

categorized, and all the work in that bucket is deemed of similar priority. Multiple service classes may exist, which

allows the administrator to provide different "buckets" of classified work.

These service classes carry a defined goal, which is a way WLM determines how to prioritize access to system

resources. Goals may be defined in several ways -- response time, velocity or discretionary. A response time

goal of "99% complete with 1/10th of a second" is a very aggressive goal; "75% within 5 seconds" less aggressive.

Between those two WLM would know to prioritize the first higher than the second. Velocity is expressed as a

number between 1 and 100, with 100 being the "fastest" velocity. WLM uses this number to get a handle on how

long work may be allowed to wait for system resources. Velocity=100 work can't wait long; Velocity=50 can wait

some time if necessary.

Note: it's important to understand that WLM gets involved with the allocation of system resources only when there

is competition for the resources. If you have a wonderfully provisioned machine -- lots of CPU, lots of memory, not

so much work -- then everyone is happy and WLM doesn't really need to think about relative priorities and

balancing access to limited resources. Conversely, it's important to understand that if WLM is told to view

everything as highest priority, then nothing has priority when things are running tight.

Reporting Classes on the other hand provide a way for WLM to categorize work so another tool, RMF, can

sweep through all the usage statistics and report back the resource usage for work in the reporting class. As

stated on the chart, this is the most common use for the XML classification file -- the assignment of work to
different reporting classes (but only one service class) for the purpose of being to report on how much each group

of work consumed.

Unit 3 - Server Models

Unit 3 - 15

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
15

XML Classification File
This provides controller a way to assign Transaction Classes (TCs) which then get
mapped to Service Classes. This is how multiple Service Classes possible in server:

One SC per servant region …

Control
Region

z/OS
Workload
Manager

zWLM

Classification

Environment Variable:

wlm_classification_file = /u/myfiles/classification.xml

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="Z9DEFLT" >

 <http_classification_info

 uri="/SuperSnoopWeb/*"

 transaction_class="Z9TRANA"

 description="Snoop" />

 <http_classification_info

 uri="/MyIVT/*"

 transaction_class="Z9TRANB"

 description="MyIVT" />

 </InboundClassification>

</Classification>

rrun_wlm_tclass_dtdInfoCenter

1

2

3

4

Transaction Classes
mapped to Service Classes

in WLM ... see that next

1. If the inbound work is of type "http", then ...

2. If the URI = /SuperSnoopWeb/* then assign TC= Z9TRANA

3. Or if URI = /MyIVT/* then assign TC = Z9TRANB

4. Or if no matches on rules then assign TC = Z9DEFLT

The XML classification file is used to introduce to the server rules it may use to map requests to a "Transaction

Class" (TC), which is then used in WLM CB rules to map the TC to a Service Class. The XML Classification File

is the starting point for mapping multiple Service Classes into a multi-servant server, and as you'll soon see it is

the foundation for the granular control function we'll discuss at the end of this unit.

By default there is no XML classification file defined to a WAS server. You enable to that by explicitely coding an

environment variable, which provides the pointer to the file. The WAS server must have READ authority to the file.

The file must be stored in USS as an ASCII file.

The chart shows a valid-but-simplified example of a classification file. The numbered blocks correspond to the

following explanations:

1. The InboundClassification tag is used to start a section for work classification. That carries with it a

type specification. Here we're showing http because that's what most people think of when they think of

work for WAS servers. Other options include iiop, mdb, sip, ola and internal. For example, if you had

http and mdb work, the classification file would have two InboundClassification sections.

2. For any given piece of work received we wish to attempt to identify it. For HTTP this is commonly done with a

pattern-match on the URI (URI is the portion of the URL that follows host and port). The example above is

showing the case where a match on /SuperSnoopWeb/* (yes, wildcards acceptable) would mean the

assignment of the Transaction Class Z9TRANA to this request. We'll see on the next chart how that TC maps

to a Service Class.

3. This shows a separate work classification rule, using uri= but a different string to match. It results in the

assignment of a TC of Z9TRANB.

4. In the event no classification rule applies, then a default transaction classification value of Z9DEFLT is

assigned.

Note: there are many more possibilities than what's shown on this chart. Note the InfoCenter search string in the

lower left of the chart. That article has full details on the options supported by the classification document.

Unit 3 - Server Models

Unit 3 - 16

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
16

One Service Class Per Servant Region
There's a subtle "gotcha" with respect to WAS internal work. This provides us a good
opportunity to review planning for the number of servant regions you need:

First ... Will WLM start servant for service class? …

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="Z9DEFLT" >

 <http_classification_info

 uri="/SuperSnoopWeb/*"

 transaction_class="Z9TRANA"

 description="Snoop" />

 <http_classification_info

 uri="/MyIVT/*"

 transaction_class="Z9TRANB"

 description="MyIVT" />

 </InboundClassification>

</Classification>

Servant
Region
Z9CLASSA

CB Classification Rules

Servant
Region
Z9CLASSB

The URI classification
rules suggest at least
two servant regions

What happens if another
application with a different

URI is in the server?

It gets the default TC and
in this example gets

mapped to CBCLASS

WAS internal work will be classified,
and in the absence of a rule it gets

the CN default ... CBCLASS

Thus it might be a good idea to take
internal work into account in the

XML classification rules

Servant
Region
CBCLASS

Third servant needed

If you use the XML file to assign work to service classes, WLM will seek to "bind" a servant to a service class.

That means the maximum number of servants you have configured needs to be equal or larger than the maximum

number of Service Classes you expect to get assigned.

Note: we'll show you how to account for the internal work in a few charts. First a review of the planning

considerations that bubble up based on the configuration XML.

Take the example above. The XML has two explicit transaction classifications and one default. The two explicit

TCs map to separate Service Classes in the CB rules (Z9CLASSA and Z9CLASSB). If you know for certain those

two applications are going to be deployed, you know that you need at least two servant regions. What happens if

another application sneaks into that server? Or if one of the applications has URI that's a little different from the

patterns provided? Well, then it's possible the default transaction class will apply and that means a Service Class

of CBCLASS based on the CB rules. That suggests the possibility of needing three servant regions.

One option would be to make sure the default TC was the same value as specified for one of the specific URI

patterns. Then you'd be back to two servant regions. Another option would be to change the CB rule so the

default TC of Z9DEFLT mapped to one of the two Service Classes (Z9CLASSA and Z9CLASSB). That too would

bring you back to needing only two servant regions.

The main points here are:

● It's a good idea to think about the relationship between your classification rules and the number of servant

regions that will be needed

● Be aware of the WAS internal work because if you don't specifically account for it (which we'll show you how to

do shortly), it ends up picking up the default TC and that may imply binding a servant to that internal work and

preventing your planned-for work having a place to go.

A question comes up ... let's say a third Service Class does sneak in. If MIN=2 and MAX=3 will WLM start another

servant to handle it? Answer: yes ...

Unit 3 - Server Models

Unit 3 - 17

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
17

Will WLM Start Servant for a New Service Class?
Yes ... provided the MAX value has not yet been met, a Service Class that comes in
without a place to go will result in the dynamic start of an additional servant:

How to account for internal work …

Control
Region

zWLM

Servant
Region

Queue for
Service Class A

Servant bound to
Service Class A

Servant
Region

Queue for
Service Class B

Servant started, Service Class B
work dispatched and servant

bound to Service Class B

Notes:
● Server most likely won't have multiple Service Classes unless XML Classification File used.
If you're not using that then most likely only one Service Class will be present.

● While servant is starting work waits in queue. Possibility exists it could timeout waiting in
that queue

● Probably don't want to use dynamic expansion for this purpose. Understand your
Service Classes and plan for MIN value accordingly.

Suppose you have a server with "Multiple Server Instances" enabled and MIN=1 and MAX=3 configured. Suppose

two servants are presently active with separate Service Classes bound to each. Now suppose a third Service

Class comes into the picture -- either unanticipated or one you expected might show up and it finally has. In this

case WLM will queue the work to a Service Class queue and start the third and final servant region. While that

servant is coming active the work stays in the queue. Depending on how long it takes for that servant to come

active that work in queue may time out.

Generally speakign you probably do not want to start servants dynamically for each Service Class. Better to

anticipate the number of Service Classes and have the MIN=n value set accordingly.

The final point here is for those who may be wondering how many Service Classes may be present in their

environment. The rule of thumb is this -- if you're not using the XML Classification File then the answer is most

likely "one." There are obscure exceptions but it's better not to focus on them.

Unit 3 - Server Models

Unit 3 - 18

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
18

How to Account for Internal Work
There will be internal work classified. How can you account for it without it simply
falling under the CN default Service Class?

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="Z9DEFLT" >

 <http_classification_info

 uri="/SuperSnoopWeb/*" transaction_class="Z9TRANA"

 description="Snoop" />

 <http_classification_info

 uri="/MyIVT/*" transaction_class="Z9TRANB"

 description="MyIVT" />

 </InboundClassification>

 <InboundClassification type="internal" schema_version="1.0"

 default_transaction_class="Z9INT" >

 </InboundClassification>

</Classification>

AE_SPREADMIN …

 --------Qualifier-------- --Class--

Action Type Name Start Service

 DEFAULTS: CBCLASS

 ____ 1 CN Z9* ___ Z9CLASSB

 ____ 2 TC Z9DEFLT ___ Z9CLASSB

 ____ 2 TC Z9TRANA ___ Z9CLASSA

 ____ 2 TC Z9TRANB ___ Z9CLASSB

 ____ 2 TC Z9INT ___ Z9CLASSB

"http" is one of several
inbound work types:

http internal

iiop mdb

sip ola

Account for internal work
as shown. Then map to a
TC you know will be used
by one of your other rules.

You can assign
separate reporting
classes to isolate

out the internal work
and get numbers on
each service class

Do same for the default TC and the CN
default and you then have all cases covered.

Earlier we mentioned that the XML Classification File is capable of supporting work types other than just HTTP.

We started with HTTP as the example simply because it's the most common type of work people think about with

WAS. But other types are supported as well -- iiop, sip, mdb, ola and ... internal.

The type="internal" value provides us a way to explicitely account for internal work. The example shows a

separate InboundClassification section with type="internal" that maps internal work to a TC of Z9INT.

Just like other TC values this gets mapped to a Service Class in the CB rules.

You could map the internal work to a separate Service Class in the CB rules, but that would mean the internal

work would get its own servant region. There's not enough internal work to justify that. Better to assign the

internal work to one of your other planned-for Service Classes. The example shows assigning Z9INT to the

Z9CLASSB Service Class. Yes, that means internal work and the other work carrying the Z9TRANB TC get mixed

together. Again, there's not a lot of internal work so that should not hurt performance. If you're concerned about

having clean reporting information then the answer is to assign a separate Reporting Class (not shown on this

chart) to the TC=Z9INT work. That will allow Z9TRANB to have a separate reporting class and the reporting

numbers stay clean and separate.

The example above is showing Service Class Z9CLASSB assigned to several things:

● CN=Z9* -- With an XML file in place you might think this would never be used because of the default TC in the

file. But it's possible some other "type" of work (IIOP, for example) could arrive. If you don't have XML to

account for the IIOP work then it would not get a TC and would thus fall back to this Service Class.

● TC=Z9DEFLT -- This will pick up any unaccounted-for work for the work "type" ... in this case HTTP.

● TC=Z9TRANB -- Our explicit TC for the work matching the URI pattern.

● TC=Z9INT -- For internal work, as we've noted.

With this in place you've accounted for the contingencies. Then all you'd need is a minimum of two servant

regions. You could have more, of course. And it is possible to have a Service Class bind to multiple servants.

There's a lot of combinations and possibilities to all of this.

Unit 3 - Server Models

Unit 3 - 19

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
19

wlm_ae_spreadmin and Re-Balancing of Service Classes
This is the next level of nuance in this ... one final control that determines the behavior
you see in this. Assume for example MIN=4 and two Service Classes seen:

Loose ends …

Servant
Region

Servant
Region

Servant
Region

Servant
Region

A

B

A

B

wlm_ae_spreadmin = 1
Default, prior to V8 fixed at this value

Control
Region

zWLM

With value = 1 WLM will attempt to balance
service classes across the minimum servants

Servants that hosted SC=A may get
rebalanced to start hosting SC=B

Can start new servant for SC if max not met

If #SC > max servants then nowhere to go

The final bit of nuance we'll show you has to do with an environment variable called wlm_ae_spreadmin. As the

name of that variable suggests, the value influences how WLM attempts to spread the application environments

("ae") across the minimum servants.

Assume you have a value of MIN=4 for servant regions. Assume further that for WLM sees two service classes in

the server. When wlm_ae_spreadmin is set to 1 then WLM will split the minimum servants into two equal

groups, one for each service class seen.

But WLM can't know in advance how many service classes it might see, so this dividing up of the minimum

servant regions doesn't occur when the server starts. At first, if only one service class is seen (for example,

internal work), it's possible all the servants get bound to that one service class. But when the second service class

is seen then WLM divides the pool of minimum servants. At this point some rebalancing of work assignments

may very well take place. And at this point there may well be two different service classes at work in the same

servant. Over time WLM works to get the service classes balanced.

This is when the value for this environment variable is "1". In V8 that environment variable was opened up so you

can set it to "0". If the value is "0" that tells WLM to do what it believes it must do to meet goals. That means it's

possible the allocation of servants to service classes might be (in tihs example) 3 to 1 ... or whatever WLM sees is

necessary.

Let's change the example. Imagine MIN=2 with the value of wlm_ae_spreadmin set to 1. Two service classes

are in play and WLM has one servant for SC=A and one for SC=B. Then SC=C comes in. What happens? If the

maximum servants is not yet met then a third servant region is started. If max has been met, then that new SC

has nowhere to go. That's a condition you don't want to see happen. Which is why planning for the maximum

number of service classes possible is important.

Unit 3 - Server Models

Unit 3 - 20

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
20

Tying up Loose End -- Multiple Servant Instances
There's a very subtle configuration scenario you should be aware of ...

Setting stage for Granular RAS …

This is a true single
servant environment

This will allow
multiple Service

Classes to co-mingle
in the same servant
If you really want just one
servant, this is the way to

configure it.

However, can't use
MODIFY to expand.

This is a multi-servant
environment with only

one servant

This restricts servant to
one Service Class

Generally not recommended unless
you're very certain about the Service
Classes in use. Better to specify MAX
greater than MIN to give WLM ability to

process other work if needed.

You do have opportunity to MODIFY
MIN and MAX higher, however.

We need to tie up a loose end here ... and it has to do with a little checkbox on the configuration panel for servant

instances. If that box is unchecked then WAS z/OS sees this as a true single-server environment. In that case

multiple Service Classes can be mapped into the single servant. WLM will allow it.

However, if the box is checked and the MIN and MAX are set to 1 then WAS z/OS does not see this as a true

single servant environment. The first Service Class in will find that servant and no other Service Classes will find

room to work. You could use MODIFY to expand the MIN and MAX values. In general this setting is not

recommended unless you're very certain of the Service Classes you have in play.

Unit 3 - Server Models

Unit 3 - 21

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
21

As we saw, the XML file identifies requests ... this new function then picks up and drives
various WAS behavior controls from server level down to the request level:

Preliminary notes …

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="Z9DEFLT" >

 <http_classification_info

 uri="/SuperSnoopWeb/*" transaction_class="Z9TRANA"

 description="Snoop" />

 <http_classification_info

 uri="/MyIVT/*" transaction_class="Z9TRANB"

 description="MyIVT" />

 </InboundClassification>

</Classification>

XML File Extended -- Control Driven to Request Level

Granular Control to Request Level

Various
Timeouts

Stalled Thread
Dump Actions

CPU Time Used
Limit

DPM Interval
and Dump Action

SMF Recording

Tracing

Message Tagging

Timeout
Recovery Actions

Granular Control to Request Level

Topics to Cover in this Section:

● What those functions are and how they work

● How to dynamically reload a new or updated XML file

● How to dynamically revert to previous XML file

WP102023TechDocs

rrun_wlm_tclass_dtdInfoCenter

This new function in WAS z/OS V8 (it's exclusive to z/OS) is on the surface an extension of the XML Classification

File. But what it does is quite different from merely assigning Transaction Classes to requests.

Think about what the XML Classification File does -- it provides WAS z/OS a mechanism to identify inbound work

by criteria of your design. Well ... if you have the request identified at the point of classification then it's possible to

have WAS do other things at the request level as well. So that's what we'll explore in this unit -- how the XML file

is extended to include additional keyword values so functions such as tmeouts, CPU limits, SMF recording, and

tracing can be controlled at the identified request level rather than just at the server level.

Unit 3 - Server Models

Unit 3 - 22

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
22

A Few Preliminary Notes
To use the granular control features implies classifying work with transaction classes
as well ...

Request cycle …

<Classification schema_version="1.0">

 <InboundClassification type="http"

 schema_version="1.0"

 default_transaction_class="AAA" >

 <http_classification_info

 uri="/SuperSnoopWeb/*"

 transaction_class="AAA"

 description="Snoop"

 />

 <http_classification_info

 uri="/MyIVT/*"

 transaction_class="AAA"

 description="MyIVT"

 />

 </InboundClassification>

</Classification>

New Function

New Function

If you don't wish to use multiple

transaction classes then code all the
TCs in the XML with the same value

If the CB rules in WLM don't have TC

rules then other defaults will apply

This new function does not require

multiple servants, even if two or
more Service Classes at work

WLM will place different Service

Classes in servant if the server is
true single server

Coming right after all that talk about multiple servant regions and multiple Service Classes you might think this

new function requires all of that as well ... but that would not be the case.

Service Classes --The XML Classification File does require that a transaction class value be specified. If your

interest is in the granular function and not multiple TCs and multiple Service Classes, then you may code each

transaction class in the XML file as the same thing. Then in the CB rules you can map this TC to a single

Service Class. Or not code any TC rule and allow the CN= rule to apply.

Servant Regions -- This new function does not require multiple servants. It will work with multiple servants but it

does not require it. That means if your standard configuration is a single servant region that's perfectly okay with

this new function we're about to see.

The message here is that the granular control function is actually quite separate from all the Service Class and

multiple servant stuff we just worked through. With one key exception -- this new granular control function

requires the use of the XML classification file. That's because the XML file provides the key starting point -- the

identification of the request. With the request identified, then WAS z/OS can drive the control behaviors down to

that request. Before the finest level of control was server, now it's at the request level.

Unit 3 - Server Models

Unit 3 - 23

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
23

High-Level of Request Cycle and Timeouts
We'll be talking about a few timeout settings ... the following picture sets context:

Dispatch timeout …

Controller
Region

Servant
Region

Dispatch Timeout
Time from placement in queue

until work completes

Queue Timeout
Percent of overall time request
may sit in queue before getting

placed into servant

Request Timeout
Time an IIOP request from application
out to other component of architecture

is allowed to take before timeout

CPU Time Used Limit
Total CPU time request may consume

before WLM enclave is quiesced

Request

Over the next several charts we're going to discussing a few different timeouts that now may be set down at the

request level. A picture helps set the context for those timeouts.

Note: WebSphere Application Server has other timeouts beyond what's shown on this chart. What we're

discussing here are timeouts that have been made configurable in the classification XML file as part of this new V8

"granular RAS" function.

Four timeout values will be discussed:

● Dispatch Timeout -- this is a timer that clocks the time from placement of request on WLM queue to

completion of request. Consider this a kind of "total time" timer.

● Queue Timeout -- this is a timer that clocks the time a request sits in the WLM queue before getting picked

up by the servant region. This is expressed as a percent of "dispatch timeout" (total time).

● CPU Time Used Limit -- this is not really a timer per se; it is a measure of how many CPU milliseconds a
request may consume before being considered "runaway." When this value is exceeded the WLM enclave is

quiesced, which results in the thread being set at the lowest possible priority.

● Request Timeout -- this is a timer that clocks the time an outbound IIOP request from your program in the

servant may take.

Unit 3 - Server Models

Unit 3 - 24

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
24

First Example - Dispatch Timeout
Work dispatched from queue to servant starts a timer to control timeout of that work.
Before: environment variable, server level at best. Now: request level:

XML nesting …

IIOP control_region_wlm_dispatch_timeout

HTTP protocol_http_timeout_output

HTTPS protocol_https_timeout_output

MDB control_region_mdb_request_timeout

WOLA control_region_wlm_dispatch_timeout

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="TRANCL" >

 <http_classification_info

 uri="/SuperSnoopWeb/*" transaction_class="TRANCL"

 description="Snoop" dispatch_timeout="60" />

 <http_classification_info

 uri="/MyIVT/*" transaction_class="TRANCL"

 description="MyIVT" dispatch_timeout="15" />

 </InboundClassification>

</Classification>

rtrb_controllingtimeoutInfoCenter

rrun_wlm_tclass_dtdInfoCenter

Server Level -- Environment Variable

Granular RAS - XML Classification File

The current environment variables
for HTTP dispatch timeouts.

Granular down to server.

XML Classification file section for
HTTP. File supports http, iiop,

mdb, ola, sip, internal

Other protocol dispatch timeouts

Requests matching this

get 60 second timeout

Requests matching this

get 15 second timeout

Timeouts

XML file

If timeout in XML and it applicable
then it takes precedence over

configured environment variable

The first example of the new granular control function we'll look at is the "Dispatch Timeout" value. Many of us are

familiar with this timeout -- it's the timer for how long a request takes once it has been dispatched from the WLM

work queue into the servant region.

At the top of the screen we see the environment variables that control this timeout value. These environment

variables have been around for several releases now. They still work if you wish to use them. But note that the

lowest level of granularity you can achieve with environment variables is scope=server.

Let's take the granularity even lower. A sample XML Classification File is shown on the chart. It's showing the

familiar type="http" ... and we ask you remind yourself that other protocols are supported and this granular

function can be used with them as well.

We see two http_classification_info sections ... one for the SuperSnoop application, one for the MyIVT

application. Highlighted in yellow we see the new feature in action. The attribute dispatch_timeout is

provided for each, but with a different value.

Step back and think about what's going on here:

● If a request matches the uri=/SuperSnoopWeb/* filter, then it will operate under a dispatch timeout of 60

seconds.

● If a request matches the uri=/MyIVT/* filter, then it will operate under a dispatch timeout of 15 seconds

● If a request doesn't match either then the environment variable applies, or its default value.

That's the essence of this new function -- illustrated with one of many attributes to control behavior down to a very

granular level.

The chart has two InfoCenter articles noted -- one for a summary of all the timeout environment variables and one
for the details on what can be coded in the XML file.

And don't forget Techdoc WP102023, written by David Follis of the IBM development organization. It provides
excellent detail on this new function.

Unit 3 - Server Models

Unit 3 - 25

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
25

XML Nesting and Effect on Precedence
The XML Classification File supports nesting, which means you may configure higher
level values as well as lower level, more specific values:

Granular RAS options …

<InboundClassification type="http"

 schema_version="1.0" default_transaction_class="TRANCL" >

 <http_classification_info transaction_class="TRANCL"

 host="host.company.com" dispatch_timeout="300" >

 <http_classification_info transaction_class="TRANA"

 uri="/SuperSnoop/*" dispatch_timeout="60" />

 <http_classification_info transaction_class=“TRANB”

 uri=“/MyIVT/*” dispatch_timeout="15"/>

 </http_classification_info>

</InboundClassification>

Open

Close

Close

Close

If request received and ...

... matches the host= and a uri=, then that timeout applies

... matches the host= but none of the uri=, then the host= timeout applies

... does not match host= then environment variable (or default) timeout applies

Open

Open

Up to this point in our discussions on the XML Classification File we've kept the XML itself somewhat simple. In

our previous examples we left out XML nesting. Nesting provides a way to provide higher level defaults and then

provide more detailed filtering at individual requests.

Look at the example shown above. This is an example of the XML like what we've shown before, but with a

difference -- this is nested. The blue dotted lines show the open / close relationships in the XML.

At the highest level we have the InboundClassification section that provides the type="http" tag. Again,

other protocols are supported; we show HTTP because it's what people most commonly think of for WAS work.

The InboundClassification section is closed at the bottom of the XML sample. A classification file might have

multiple of these, one for each protocol the user wishes to code rules for.

Next is the first "node" in the XML tree for http_classification_info. This uses a match criteria of host=

rather than uri= ... with a dispatch_timeout value of 300 seconds specified. That node is closed further

down with the </http_classification_info> line. Within the open and close of that node there are two

additional http_classification_info lines. Each has its own "open" and "close" tags. Those are lower, or

"nested" nodes on the tree. Each has a uri=" " match criteria and a different dispatch_timeout value.

What this provides is a way to capture a broader set of requests with the outer XML node and give it a "default"

dispatch_timeout value. But if a request comes in that matches the host= and matches one of the uri=

values, then assign a different dispatch_timeout value.

But if something comes in with just the host= matching but not one of the uri= values, then the outer node

dispatch_timeout applies.

If a request comes in that doesn't match anything ... well, then you fall back to the environment variables or their

defaults.

Unit 3 - Server Models

Unit 3 - 26

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
26

The Available Granular Control Options
Here's a complete list of the options available with this new function:

Multiple keywords in XML okay …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

Previous chart

Timeout for time spent in queue
prior to dispatching to servant

Expressed as a percent of the

dispatch timeout

Example:

Dispatch = 300 seconds

Queue = 10 percent

Request must be dispatched to servant
within 30 seconds or request times out

Set this too high and request sits in queue
and if dispatched has very little time to
complete

We've shown one new feature attribute value -- dispatch_timeout. There are more. This chart shows all the

available attributes for this new function. What we'll now do is work through all the attributes and explain what

each does. We start with queue_timeout_percent.

Note: many of these values have corresponding environment variable equivalents. We are not showing those

equivalents here. The WP102023 Techdoc does a very nice job of calling those equivalents.

This value serves as the timer for how long a request sits in the WLM work queue before it gets dispatched to a

servant worker thread. But rather than being expressed as a time value, it's expressed as a percent of the

applicable dispatch timeout value (either specified in XML, in an environment variable or default). Why as a

percent? Because in general the the time spent in the work queue is very short. The real interest is not that time

so much as it is the overall time to complete the request. By expressing this as a percent of that overall time to

complete it allows you to indicate your desired proportion of overall time the queue time may represent.

For example, imaging the dispatch timeout is a value of 300 seconds.

A queue_timeout_percent value of 10 means the work can't spend more than 30 seconds (300 x 10%) in the

WLM work queue before timing out. Suppose it's delayed in the queue up to 29 seconds, but then gets

dispatched just before the timeout. That means the work still has 90% of the overall timeout value to complete its

work in the servant.

Now imagine a queue_timeout_percent of 80 and a overall timeout of 300 seconds. Now the work could sit in the

work queue for 240 of the overall 300 seconds, leaving a very short period of time to get the work done in the

servant if it is dispatched at the last moment.

By expressing the queue_timeout_percent as a percent of the overall dispatch timeout value, it allows you to

specify the queue timeout in the context of what's really important -- the proportion of overall time the work sits in

the first step of the process, which is the WLM work queue.

Unit 3 - Server Models

Unit 3 - 27

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
27

Multiple Keywords in XML Acceptable
At this point you may be wondering whether multiple keywords can be coded in the
XML, and the answer is yes ...

Request timeout and CPU used …

<InboundClassification type="http"

 schema_version="1.0" default_transaction_class="TRANCL" >

 <http_classification_info transaction_class="TRANCL"

 host="host.company.com"

 dispatch_timeout="300"

 stalled_thread_dump_action="traceback" >

 <http_classification_info transaction_class="TRANA"

 uri="/SuperSnoop/*"

 dispatch_timeout="60"

 queue_timeout_percent="10"

 cputimeused_limit="500" />

 <http_classification_info transaction_class=“TRANB”

 uri=“/MyIVT/*” dispatch_timeout="15"/>

 </http_classification_info>

</InboundClassification>

Example of three keywords used
for the SuperSnoop classification
node on the XML tree

These will apply to lower nodes
in the nested XML unless
overridden at lower level

We just showed a chart with 15 attributes that provide this new granular control function. If only one was permitted

per classification node in the XML the new feature wouldn't be very useful. Multiple values are permitted as

illustrated.

When the XML is nested you may have some values specified on the higher (or "outer") nodes to serve as a kind

of default for the lower (or "inner") nodes. And as shown, the higher-level values may be overridden by specified

values at the lower levels.

Unit 3 - Server Models

Unit 3 - 28

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
28

Request Timeout and CPU Time Used Limit

Dump action …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

Timeout for outbound requests
issued by Java programs in servant

It is a request from the perspective
of the servlet or EJB

Expressed in seconds

Maximum CPU this request may
consume before having the WLM
enclave quiesced

Expressed in milliseconds

On this chart we'll discuss two attributes simply to save some charts. These two are not necessarily related

functionally. It's just it doesn't take much to explain them and two per chart easily fit the white space available. ☺

request_timeout -- this attribute will at first seem a little odd because it has nothing to do with the request

from the client into WAS. The "request" portion of that keyword refers to a request made by a Java component in

the servant. Java programs (servlets, EJBs) will often issue a request to other Java objects, either in the same

server or another part of the cell or even somewhere well outside the cell. This timeout applies to requests such

as those. The timeout is expressed in seconds, much like the other timeout values.

cputimeused_limit -- this attribute specifies the number of milliseconds of CPU time (not wall clock time) a

thread running a matching request may consume. If the thread consumes more CPU time than specified here,

then the WLM enclave for that execution thread is quiesced by WLM. That has the effect of moving the priority of

that work to below discretionary. The thread is not killed ... it's just that WLM will not give that thread any access

to the CPU unless nothing else on the system is seeking resources. On a development or test system that may be

true, in which case the quiesced thread will continue. But on a production system it's very unlikely nothing else

would be seeking resources, so in effect that thread (more precisely, the enclave) will cease to consume
resources. This is a way to protect against runaway processes.

Unit 3 - Server Models

Unit 3 - 29

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
29

Dump Action When Timeout Occurs

Dispatch Progress Monitor …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

This controls what happens when
two other controls expire:

dispatch_timeout

cputimeused_limit

Options are:

svcdump

javacore

heapdump

traceback

javatdump

none

Another chart where we combine two attributes on one chart. In this case there is a certain affinity between the

two. These two attributes define what kind of action WAS z/OS should take when another defined attribute has

reached its limit:

stalled_thread_dump_action � when dispatch_timeout (or equivalent env. variable) has expired

cputimeused_dump_action � when cputimeused_limit (or equivalent env. variable) has been met

The options you may specify on these two attributes are the same, and they're shown on the chart.

What this provides you is your choice of debug options when the event has taken place. And remember, these

values override values that may be set at the higher server level. So it's possible to have one dump action set at
the server (traceback, for example), but for a specific request you can have a javacore produced.

Unit 3 - Server Models

Unit 3 - 30

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
30

Dispatch Progress Monitor (DPM) Settings

SMF 120.9 …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

DPM stands for Dispatch Progress
Monitor. It is a function that will

process a dump action every n
seconds.

dpm_interval is the interval
period expressed in seconds

dpm_dump_action is the same as
we just saw for the other dump
action: svcdump, javacore,

heapdump, traceback, javatdump
and none

This function has a set of MODIFY
commands that may be used to clear
DPM settings or reset to XML settings

See WP102023 for the details on these
MODIFY actions for DPM

The "Dispatch Progress Monitor" (DPM) is a function that will produce a dump action when a dispatched thread

exceeds the time specified for the interval value, and then produce the dump action every interval period until the

dispatched thread completes. It's a function meant to help debug cases where infrequent and unpredictable

delays crop up in processing.

Two attributes are shown here -- one for the DPM interval and one for the dump action to be taken when that

interval has expired. The interval attribute is expressed in seconds, and the dump action is the same we saw on

the previous chart.

The DPM function has a set of MVS MODIFY commands to dynamically impose DPM intervals and dump actions,

as well as reset functions. So there's a relationship between the settings in the XML and whatever MODIFY

commands might have been issued. The matrix of possible variations on these two variables gets large and

complex, and rather than covering that here we'll refer you to the WP102023 Techdoc for a fairly complete

explanation of what applies when various combinations of XML and MODIFY exist.

Unit 3 - Server Models

Unit 3 - 31

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
31

SMF 120.9 Recording

Tracing …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

WAS z/OS Version 7 introduced a
new SMF record format -- the SMF

120 subtype 9 records.

With WAS z/OS V8 the recording of
SMF 120.9 records now down to
identified requests

This includes the base records as
well as the optional additional
information records.

Value is 0 (off) or 1 (on)

F <server>,SMF,REQUEST,OFF
will override XML

F <server>,SMF,REQUEST,RESET
will go back to XML settings

WAS z/OS Version 7 introduced the SMF 120.9 records. In V7 we had the opportunity to specify the recording of

SMF 120.9 with environment variables as well as MODIFY commands. The SMF 120.9 records have two "levels"

of detail -- the base records, and a set of option extended detail records.

The attribute SMF_request_activity_enabled is what turns on or off the base records at the request level.

The other three shown are the extended optional records.

What Version 8 has done is extend this SMF recording to the request level. Now you can have SMF 120.9

records -- either the base or the extended -- written for only those requests identified in the XML file.

The intersection with the MODIFY command for SMF 120.9 is shown on the chart:

● If you have the SMF attributes specified in the XML (and the XML is in use by a server), the MODIFY to turn

SMF recording off will override the XML. That means requests matching elements of the XML will not result in

the the writing of SMF 120.9.

● However, you may use the MODIFY RESET command to go back to whatever you have coded in the XML

Note: at the end of this unit we're going to explain how you can dynamically reload an updated copy of the XML.
So changes you wish to make to the XML for SMF or any other attribute can be made and reloaded on the fly,

providing new or modified granular behavior.

Unit 3 - Server Models

Unit 3 - 32

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
32

Tracing for Identified Requests Only

Custom message tagging …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

Prior to V8 tracing was granular to
server only. All activity in the

server traced. That often resulted
in a great deal of trace output.

This allows you to set a trace level
for the server, but trace only

identified requests.

Value is 0 (off) or 1 (on)

If WAS z/OS sees this value set to 1

in the XML file, then tracing is done
only for matching records.

The next attribute we'll discuss is classification_only_trace, which drives tracing down to the individual

request level.

Anyone who has used WAS tracing before knows that it can produce a lot of output. That's particularly true for

some of the more detailed trace settings. In the past the best we could do was set the trace specifications for the

server, and those trace settings would apply to all activity in the server. Then the chore was to wade through all

the output looking for the needle in the haystack, so to speak.

With this new granular control we can specify which requests you want tracing for. Only those requests get traced.

Notice how the attribute is really just a switch -- 0 or 1. The attribute doesn't say anything about the trace settings

to use. Those are set as they've always been set -- through the Admin Console runtime settings, using

environment variables or using the WAS z/OS MODIFY command.

If WAS z/OS sees a valid XML file and sees in that XML this classification_only_trace=1 setting, then it

readies the trace settings set elsewhere but does not start tracing until some request matches the classification

criteria in the XML. Then only that matching request gets traced.

This gives you the opportunity to narrow the tracing that's done to only those requests you really want tracing for.

All other requests are not traced.

Unit 3 - Server Models

Unit 3 - 33

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
33

Custom Message Tagging

Timeout recovery …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

This allows you to place a custom
string on all log, trace and system

messages output for requests that
match the classification.

Up to 8 characters

Output shows up as:

tag=MYTAG

within the log, trace or message.

This may affect system automation.
Either correct system automation,
or not use in XML, or specify

environment variable:

ras_tag_wto_messages = 0

That tells WAS to ignore XML
settings for message tags written
to the operator console.

Message tagging goes
to JES but not to HPEL

The message_tag attribute provides a way for you to append to all log, trace and system messages related to an

identified request a custom string of your choosing. This provides a way to quickly seek and find messages

related to specific requests, and to filter out records related to a given request. The custom tag may be up to eight

characters in length.

Note: This message tagging feature only shows up in JES. If you enable HPEL then the messages get written to

HPEL without the tag. That is because the tag is applied at a fairly low-level of WAS code, and HPEL captures

messages and writes them to HPEL well above that message-tagging code. If the message is written to HPEL

then it never gets to the point where the message tag is applied. If you have HPEL enabled some z/OS native

messages with the tag get to JES, but all the Java-related messages go to HPEL without the tag.

We realize that adding a custom message tag to system messages may affect system automation routines

specifically coded to find keywords at certain positions within output. If that happens, you may either correct the

system automation routines, remove the message_tag attribute, or you may specify a new environment

variable called ras_tag_wto_messages which can be used to suppress the custom message tag on WTO

messages. Set that variable to 0 (for "no") and the custom tag will be suppressed to the operator console, but will

still appear in logs and traces. The default for this new variable is 1 (for "yes") so you need to explicitely code this

new variable if you wish to suppress custom message tagging to WTO messages.

Unit 3 - Server Models

Unit 3 - 34

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
34

Timeout Recovery Option

XML file and MODIFY …

dispatch_timeout=“_____"

queue_timeout_percent =“_____"

request_timeout=“_____"

stalled_thread_dump_action=“_____"

cputimeused_limit=“_____"

cputimeused_dump_action=“_____"

dpm_interval=“_____"

dpm_dump_action=“_____"

SMF_request_activity_enabled=“__"

SMF_request_activity_timestamps=“__"

SMF_request_activity_security=“__"

SMF_request_activity_CPU_detail=“__"

classification_only_trace=“__"

message_tag=“_____"

timeout_recovery=“_____">

We are accustomed to a timeout
resulting in an EC3 abend of the

servant region.

The V7 feature to delay timeout
abends, particularly with the hung
thread threshhold setting, could

delay loss of the servant.

This new function in V8 allows you
to set the recovery action:

SERVANT - normal EC3 abend (or delay if

hung thread threshhold in play)

SESSION - sends error message to client,

then closes the TCP socket and the HTTP
session. Servant stays up. Thread either
completes or ends up hung.

The final attribute is timeout_recovery. This provides the ability to specify what happens when a timeout

occurs. We're accustomed to the dreaded EC3 abend of the servant region. In WAS z/OS V7 we provided the

ability to delay the EC3 abend by specifying a threshhold percent of hung threads below which the EC3 abend

would be deferred. With this attribute we can set two options -- SERVANT and SESSION.

SERVANT does what we're accustomed to -- when a timeout occurs the servant region is abended with EC3. This

abend action may be delayed if the threshhold function added in V7 is in place.

SESSION takes a different approach. This tells WAS z/OS to send an error message back to the client and close

the TCP socket and HTTP Session. The servant stays up. No EC3 abend. The thread on which the timeout

occurred either continues and eventually completes, or it ends up truly hung. But the point is the EC3 does not

occur.

Unit 3 - Server Models

Unit 3 - 35

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
35

How XML File Can Be Read and Made Active
There's a few ways to bring an XML file or changes to an XML file into the server:

Checking for state of XML …

wlm_classification_file = /<path>/<file>
Control
Region

Environment Variable

Then start or restart the server

F <server>,RECLASSIFY,FILE='/<path>/<file>'

MODIFY to load initial or replace existing

WAS will load the specified file. This will replace a file named on the
configured environment variable or it will load the file initially.

F <server>,RECLASSIFY

MODIFY to revert to defined environment variable

WAS will re-read whatever XML file you were most recently using

This is a way to update the current XML and have WAS read it in to have the changes take
effect

F <server>,RECLASSIFY,FILE=

MODIFY to turn off classification completely

WAS will cease using any classification file

There are three ways you can get an XML Classification File to be read into the server's control region (that's

where classification occurs -- the CR and not the SR ... classification is one of those "IBM plumbing" activities we

said takes place in the CR).

One way is to code the environment variable wlm_classification_file and point to the path and file

name for the file. Then restart the server to pick up the file.

Note: on the next chart we'll show you the messages you'll see for success or failure for the read of the XML file.

Another way is to use the MODIFY command to dynamically read in the file specified on the MODIFY command:

● If you specify a file on the MODIFY RECLASSIFY command, it will read in the new file

● If you specify just RECLASSIFY (but no file specified) then it re-reads whatever classification file it was most

recently using. This is a way to refresh the in-memory copy of the classification file by re-reading the file again

from the file system.

● If you specify RECLASSIFY with FILE= (but no file name) then classification turns off ... WAS discards all in-

memory copies of the classification file and reads nothing from disk.

Unit 3 - Server Models

Unit 3 - 36

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
36

Checking The State of the Classification File
Here's a quick summary of what to check for to make certain what file was loaded and
whether any XML parsing errors occurred:

BBOJ0129I: The /wasetc/was8lab/other/classification.xml workload

classification file was loaded at 2011/11/25 12:22:22.710 (EST)

In the Control Region output -- Positive Sign

In the Control Region output -- Sign of Problems

MODIFY to see the state of the XML file

F Z9SR01A,DISPLAY,WORK,CLINFO

 :

BBOJ0129I: The /wasetc/was8lab/other/classification.xml

workload classification file was loaded at 2011/11/26

14:58:28.586 (EST)

BBOJ0085E: PROBLEMS ENCOUNTERED PARSING WLM CLASSIFICATION XML FILE

It then offers fairly good details on what the problem is

 Liberty Profile …

Naturally you'd like to know if the XML you specify is read in properly, or if there are problems. There are

messages to look for in the control region. They are shown on the chart above. The explanations offered for the

case where there's a problem are pretty good ... if it's a parsing problem the description guides you to where in the

file the XML parsing error occurred.

Another way is to issue the MODIFY command shown on the chart. That will tell you which XML file is active at

that moment in time. This is handy if you've been using the other MODIFY commands shown on the previous

chart to dynamically bring in new files and you're not sure what file is actually loaded. This will tell you.

Some common errors reading the file:

● The file's READ permission bits don't allow the CR access to the file.

● The file is stored in USS as EBCDIC, when it needs to be in ASCII.

● There's an XML parsing problem ... some missing close bracket, or some missing attribute. Again, the error
explanation offered in the BBOJ0085E message is pretty helpful in debugging this.

Unit 3 - Server Models

Unit 3 - 37

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
37

The Liberty Profile
Single JVM, composable, dynamic

WP102110 at

ibm.com/support/techdocs

Unit 3 - Server Models

Unit 3 - 38

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
38

Overview of the Liberty Profile
The Liberty Profile is designed to be a single-JVM server model that is lightweight,
composable and dynamic:

Composable "features" …

Java Virtual Machine

Composable
Function

Composable

Function

API API API

Composable
Function

Composable

Function

API API API

ApplicationApplication ApplicationApplication

server.xml

● Composable -- you configure the function the
application needs; you don't need to load up

everything

● Dynamic -- changes to configuration or changes
to applications detected and dynamically

enabled

● Subset of traditional WAS function
Liberty is not full Java EE, traditional WAS is

● Upwards application compatibility
Apps that run in Liberty will run in traditional WAS ... but not necessarily
the other way around since Liberty is subset of traditional WAS

● Each server is one JVM

● Run from UNIX shell or as started task

● One required configuration file: server.xml

● Not part of traditional WAS administrative

DMGR, federated node model
But there is an ability to manage via the "Job Manager" function of
traditional WAS (advanced topic, we won't get into that here)

When approaching the "Liberty Profile" for the first time, you must try to keep it separate from the traditional WAS

z/OS server model with the CR, SR and all the things we just finished discussing. The Liberty Profile server model

is packaged and delivered with WAS z/OS Version 8.5, but in many ways it is quite different from traditional WAS

z/OS.

The goal of the Liberty Profile model is to provide a lightweight and flexible server runtime. The lightweight goal is

achieved by making the functions loaded by Liberty "composable" -- that is, through the configuration you indicate

what functions your application needs and only those functions (and functions Liberty sees are co-requisite with

your specified functions) consume resources. The Liberty Profile is also dynamic in that changes to the

configuration and changes to the applications may be dynamically detected and updated. (That feature can be

controlled so the polling cycle is reduced or turned off completely.)

The Liberty Profile is a functional subset of the traditional WAS runtime model. The traditional WAS model is a full

Java EE runtime; the Liberty Profile is not. That said, it is important to understand that applications developed and

tested with Liberty will run in traditional WAS. (The reverse is not necessarily true ... it's possible to develop an

application for the full Java EE WAS runtime that would not work in the functional subset Liberty server.)

Each Liberty Profile server instance is a single JVM, not multiple JVMs like what we saw for traditional WAS z/OS.

The server instance may be started and operated from the UNIX shell or as a z/OS started task. Which of those

two approaches you select is really a matter of your preference. Running the servers as a z/OS started task

provides access to the MODIFY command, but otherwise the function available is the same for both methods.

The configuration is very simple -- one primary XML file ("server.xml") is all it requires. (There are other optional

configuration files for JVM properties and UNIX environment entries.) Later in this unit we'll discuss what that

server.xml file looks like.

The Liberty Profile server instances are not part of the "Admin Console" administration model you may be

accustomed to with traditional WAS. Liberty Profile server instances are not part of the traditional WAS z/OS
Network Deployment structure. Each server instance is separate from the others but, as we'll see, there is the

ability to share configuration and applicaton elements between Liberty servers to aid in scaling up and out.

Unit 3 - Server Models

Unit 3 - 39

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
39

Server "Features" -- Composable Functionality
The InfoCenter lists the features that may be configured into the server.xml, which
provides those functions to the Liberty Profile server instance:

Liberty 8.5.5 …

beanvalidation-1.0

blueprint-1.0

jaxrs-1.1

jdbc-4.0

jndi-1.0

jpa-2.0

jsf-2.0

jsp-2.2

json-1.0

localConnector-1.0

monitor-1.0

osgi.jpa-1.0

restConnector-1.0

ssl-1.0

appSecurity-1.0

serverStatus-1.0

servlet-3.0

sessionDatabase-1.0

wab-1.0

zosSecurity-1.0

zosTransaction-1.0

zosWlm-1.0

rwlp_featInfoCenter

<server description="myServer">

<featureManager>

 <feature>servlet-3.0</feature>

 <feature>jdbc-4.0</feature>

 <feature>zosTransaction-1.0</feature>

</featureManager>

 :

server.xml

Web applications only in Version 8.5 of Liberty

Update server.xml with new feature and feature

dynamically loaded (server restart not needed)

If you specify a feature and that implies another is also
needed, Liberty will automatically load the other as well

z/OS extensions:
● Use of SAF as identity store and trust/keystore
● Use of RRS for Type 2 transaction management
● Ability to classify work (remember Report Class discussion)
● Ability to use MODIFY commands if run as started task

On the previous chart's notes we mentioned the "composable" nature of the Liberty Profile server model. In the

server.xml file you indicate which features you wish the Liberty Profile server instance to support and load. The

chart is showing two things -- all the features supported with the initial release of Liberty (left side of chart) and an

example of three of those features being specified in a snippet of server.xml.

Liberty is smart enough to understand pre-requisite and co-requisite functions. So, for example, if you specify

"jsp-2.2" Liberty knows it must also load "servlet-3.0" since JSPs become servlets when compiled.

By default Liberty will dynamically monitor the server.xml file for changes, and will update the running server with

any changes it detects. Those changes may be additions or deletions to the function.

Liberty Profile for z/OS has a set of extensions designed to take advantage of the z/OS platform. Those

extensions are noted on the chart. We'll cover these in more detail later in the unit.

Unit 3 - Server Models

Unit 3 - 40

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
40

Server "Features" -- Version 8.5.5 update
V8.5.5 saw significant updates to the Liberty Profile features:

Connectivity options …

ejblite - session (stateful, stateless), JPA, container TX

managedBeans - JMX and mBean support

oauth - open standard for authorization

cdi - contexts and dependency injection

webCache - Dynacache or use WXS or DataPower caching

concurrent - asynchronous work with context of calling thread

wasJmsClient - JMS client to Liberty engine or full WAS SIBus

wmqJMSClient - JMS client to MQ

jmsMdb - host JMS MDB application

wasJmsServer - hosts messaging engine and queue

wasJmsSecurity - for messaging engine

jaxb - Java Architecture for XML Binding 2.2

jaxws - Java API for XML Web Services 2.2

wsSecurity - web services security

mongodb - open standard noSQL database

ldapRegistry - use LDAP for security registry

Building the
capabilities of
Liberty Profile

The JMS support was a
known limitation of
Liberty 8.5 and with 8.5.5
that function is provided

rwlp_feat 8.5 InfoCenter updated with 8.5.5 "What's New" tagsInfoCenter

When Liberty Profile came out with the V8.5 release, the list of functions available with Liberty was known to be

missing a few things. The plan was in place to augment Liberty Profile with those functions over time, and with

V8.5.5 we see some of these enhancements.

The chart above shows the features added to Liberty Profile V8.5 on z/OS. As you can see, an implementation

EJB "lite" comes in, as well as JMS support.

Unit 3 - Server Models

Unit 3 - 41

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
41

Connectivity Options with 8.5.5
A summary chart of connectivity options with Liberty z/OS:

Liberty in the file system …

Liberty

Profile z/OS

DB2

CICS

IMS

MQ

WAS z/OS

Browser

Program
Client

JDBC T4 Remote
JDBC T2 Local

JMS MQ
Web Services

JMS MQ
Web Services

JMS MQ

JMS MQ
JMS SIB

Web Services

HTTP

JMS MQ
JMS SIB

Web Services

Not universal, but growing

Think about how Liberty might map
into the lower end of the architecture

This chart provides a summary of the connectivity options to commonly used IBM data resources. It is intended to

give a sense for how you might use Liberty Profile on z/OS. The chart also shows how clients may access a

Liberty Profile server. The inclusion of JMS support in 8.5.5 expanded the connectivity options from what was

available in 8.5.0.

Unit 3 - Server Models

Unit 3 - 42

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
42

Those files are relatively small ... around 60MB. They represent the
product files of Liberty. You will likely have this as a read-only file system.

 So where do the configuration files go? In a "user directory" ...

What 8.5.0 Liberty Looks Like in File System
When you specify option liberty to IM it will install the following directory and file
structure into the target location:

V8.5.5 …

Note: This page shows what things look like for WAS z/OS V8.5. With 8.5.5 the installation for Liberty changes,

and we show that on the next chart.

To help you understand the physical structure of Liberty, the chart above shows you what the installation files look

like when you install WAS V8.5 using Installation Manager (IM) on z/OS. The key points being made by the chart

are:

● You must specify "liberty" as part of the IM installation parameters to get Liberty installed into the file system

● It will install under the /wlp directory within whatever target mount point you specify for WAS V8.5 itself

The files that install are the runtime files, not the configuration files. Those are created (typically) somewhere
other than the read-only file system for the WAS V8.5 installation. As you'll see in the next few charts, where that

may be is really up to you ... the configuration files may be located anywhere.

Unit 3 - Server Models

Unit 3 - 43

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
43

What 8.5.5 Liberty Looks Like in File System
With 8.5.5 the installation of Liberty changes a bit:

Creating a server …

imcl install com.ibm.websphere.liberty.zOS.v85,

liberty,embeddablecontainer,extprogmodels +

-installationDirectory /usr/lpp/zWebSphere/Liberty

Separate package name

Separate install directory from WAS itself

<dir>

 /bin

 /clients

 /dev

 /lib

 /templates

Then the structure is essentially
the same as the prior chart, with
8.5.5 delivering additional function

Note: This page shows what things look like for WAS z/OS V8.5.5.

With WAS z/OS 8.5.5, Liberty is broken out as a separate "package" to install. This implies an installation

directory outside the WAS z/OS install location. Once installed, the Liberty directory structure for 8.5.5 is the same

as shown for 8.5 throughout this unit.

Unit 3 - Server Models

Unit 3 - 44

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
44

Creating a Server ... and the "User Directory"
The server configuration files and directory structure may be created at a separate
location ... called the "user directory":

Starting the server in UNIX shell ...

That "user directory" may be located anywhere, and Liberty may operate
under any ID you wish. The key is the WLP_USER_DIR shell environment

variable ... that tells Liberty where the server configurations reside

You may create multiple

servers under this directory

The files that get installed with IM do not constitute a server configuration. They are simply the Liberty Profile

product files. The create a server configuration requires the use of one of those installed files ... the server shell

script. That shell script will create a server configuration in whatever directory is named on the UNIX environment

variable WLP_USER_DIR. In the chart we're showing the configuration being created under a directory called

/liberty_config ... but your value may be whatever you wish. The only requirement is that the ID you run

server with has write access, and there's space at the target location for the relatively small size of a configuration.

Note: it is possible create a server configure within the installation directory, meaning: under /wlp. If your UNIX

environment did not have WLP_USER_DIR set then by default that's where the server shell script would try to

create it. But the installation file system for WAS z/OS is typically mounted read-only. Which is why we're

illustrating the setting of WLP_USER_DIR environment variable and creating the server configuration at a different

location.

The example above is showing the server "myServer" being created. But you may create any number of servers

under a WLP_USER_DIR location. In an upcoming chart we're going to show how Liberty has a set of built-in

variables that may be used for location subtitution, and that allows for some really useful sharing of configuration

elements and sharing of applications across servers.

Unit 3 - Server Models

Unit 3 - 45

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
45

Starting a Server from the UNIX Shell
Liberty may be started from the UNIX shell or as a z/OS started task. Here we show how
it is started from the UNIX shell:

Starting server as z/OS started task …

The server shell script may also be used to check the status of a server or
stop the server (along with several other administrative actions)

Once you have the configuration constructed -- created using the server shell script and the server.xml

modified to your needs -- you may start the server instance. This may be done in the UNIX shell or as a z/OS

started task. In this chart we're showing how to start the server instance in the UNIX shell.

Again, the server shell script comes into play (the server shell script has several uses, creating servers and

starting them are but two). With the UNIX environment aware of WLP_USER_DIR, the server shell script knows

where to access the configuration files. The server named on the server start command refers to a directory

under the WLP_USER_DIR location. The server.xml file is read and the Liberty Profile server instance is started.

If you had another server under the WLP_USER_DIR location you could start it using the same process. Then

you'd have two server instances started.

The started servers may be stopped using the server shell script as well.

Unit 3 - Server Models

Unit 3 - 46

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
46

Starting a Server as a z/OS Started Task
Liberty may be started from the UNIX shell or as a z/OS started task. Here we show how
it is started from the UNIX shell:

Multiple servers …

Or have separate proc
for each server with
hard-coded server

name on PARMS= on
PROC statement

If you prefer to run the Liberty Profile server instances as z/OS started tasks, that may be done as well. Liberty

comes with a sample JCL start procedure called BBGZSRV. The numbered blocks on the chart correspond to the

following explanations:

1. The sample BBGZSRV proc is supplied under the Liberty Profile installation /templates path. Copy that out

to your proclib.

2. The INSTDIR substitution variable is used to indicate where the WAS V8.5 and Liberty files are located.

3. The USERDIR substitution variable is used to indicate where the server configuration files are

4. The values for INSTDIR and USERDIR are substituted in

5. The server name is passed in using PARMS= on the START command

The server starts up as a z/OS started task with, by default, the name BBGZSRV. You may give it a separate

JOBNAME if you wish, or rename the JCL start proc to something different (and update the RACF STARTED profile

accordingly).

Unit 3 - Server Models

Unit 3 - 47

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
47

Multiple Servers Under Same User Directory
You may create multiple servers under the same user directory, and those servers may
then share a set of common directories:

The server.xml file …

/liberty_config

 /servers

 /myServer

 server.xml

 /yourServer

 server.xml

 /ourServer

 server.xml

 /shared

 /apps

 /config

server create myServer

server create yourServer

server create ourServer

WLP_USER_DIR=/liberty_config

${shared.app.dir}
Use this variable in configuration XML to
refer to the /shared/apps directory under
the user directory where the server operates

Common application

Common configuration elements

${shared.config.dir}
Use this variable in configuration XML to
refer to the /shared/config directory, and
use <include> tag to bring in common XML

The server create command may be used to create multiple servers under the same directory. The benefit in

doing this is it allows you to take advantage of built-in configuration variables that resolve to directories you may

create under the common WLP_USER_DIR directory. Two such variables are shown on the chart -- one that

resolves to a shared application directory, and one that resolves to a shared configuration elements directory.

The benefit of this is it allows you to configure a group of servers, each that use these built-in variables to point

back to a single, common set of applications or definitions. Change the common artifact in the shared directory

and all the servers that make use of that shared artifact will detect the change and pick it up. In a few charts we'll

show a hypothetical 99 server configuration that makes use of these built-in variables.

Unit 3 - Server Models

Unit 3 - 48

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
48

The server.xml File ... the Central Configuration File
The server.xml file provides the Liberty Profile server instance information about what
features to load and other information needed to perform the needed functions:

Multiple servers sharing configuration …

<server description="myServer">

 <featureManager>

 <feature>servlet-3.0</feature>

 <feature>jdbc-4.0</feature>

 <feature>zosTransaction-1.0</feature>

 </featureManager>

 <jdbcDriver id="DB2T2" libraryRef="DB2T2LibRef" />

 <library id="DB2T2LibRef">

 <fileset dir="/shared/db2a10/jdbc/classes/" />

 <fileset dir="/shared/db2a10/jdbc/lib/" />

 </library>

 <dataSource id="ds1"

 jndiName="jdbc/exampleDS"

 jdbcDriverRef="DB2T2">

 <properties.db2.jcc driverType="2" databaseName="WSCDBP0"/>

 </dataSource>

 <httpEndpoint id="defaultHttpEndpoint"

 host="*"

 httpPort="19123" />

</server>

rwlp_metatype_4icInfoCenter

This example shows how to
configure JDBC T2 using
z/OS RRS

No application definition in
this example ... apps are
placed in /dropins directory
and dynamically picked up
There is an <application> tag that may be
used to explicitely define application and
WAR file location

Remember: this file may be
updated and changes

dynamically detected and
incorporated

Possible, but now shown:
● Substitution variables
● Includes from other files
● Many other features

As mentioned, the server.xml file serves as the primary (and only required) configuration file. Other

configuration files exist -- server.env (UNIX environment variables), jvm.properties (custom properties for

the JVM), and bootstrap.properties (influences settings at initial bootstrap), but those are optional.

The server.xml is edited manually ... you add or remove function as your server instance and applications

require. Remember that changes to server.xml are dynamically detected and implemented.

In this example we're showing the full server.xml for a server that will host a JDBC Type 2 connection to DB2

using RRS as its TX manager. The InfoCenter search string at the bottom of the chart gives you easy access to

the InfoCenter page with specifics on the XML elements.

Note that there are no application definitions in this server.xml example. That's because Liberty has the ability

to monitor a directory called /dropins for application files. Application WAR files seen there are automatically

loaded; and if those files change (or new files appear) those are automatically loaded.

This is just one example of server.xml, and as such we're not showing all (or even most) the various

configuration options. In time you'll develop a set of working XML files with the help of the InfoCenter and other

documentation.

Unit 3 - Server Models

Unit 3 - 49

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
49

Multiple Servers, Common server.xml
Previous chart mentioned substitution variables and file includes. This makes possible
multiple servers having a common server.xml, but having unique values:

V8.5.5 Collectives …

/liberty_config

 /servers

 /server1

 server.xml

 jvm.properties

 /server2

 server.xml

 jvm.properties

 :

 /server99

 server.xml

 jvm.properties

 /shared

 /apps

 common_app.war

 /config

 common_config.xml

<server description="server">

 <include location="${shared.config.dir}/common_config.xml" />

 <application location="${shared.app.dir}/common_app.war" />

 <httpEndpoint id="defaultHttpEndpoint"

 host="*"

 httpPort="${http.port}"

 httpsPort="${https.port}" />

</server>

-Dhttp.port=10001

-Dhttps.port=20001

-Dhttp.port=10002

-Dhttps.port=20002

-Dhttp.port=10099

-Dhttps.port=20099

<server>

 <featureManager>

 <feature>servlet-3.0</feature>

 <feature>jdbc-4.0</feature>

 <feature>zosTransaction-1.0</feature>

 </featureManager>

 :

 Other common configuration elements

 :

</server>

Built-in variables that resolve to
the directories within the user

directory as shown

Liberty Profile provides a means of sharing configuration information across multiple servers. This means it's

quite possible to have many server instances sharing a common server.xml file and a common set of

application files.

In the chart above we're illustrating:

● The common server.xml used by multiple servers. This XML makes use of substitution variables to

provide uniqueness as well as pointers to XML to be included dynamically and a pointer to a common

application file.

● A jvm.properties file for each server which provides unique HTTP ports. Those values are then

substituted into the common server.xml.

● The including of a common set of XML mainained at a shared location. Updates to this shared include file are

dynamically propagated to each server and update dynamically.

● A pointer to an application that's maintained in a shared location. Updates to this application are dynamically

detected and updated as well.

The point here is that multiple Liberty Profile server instances do not necessarily have to be administered

completely isolated from one another. It is quite possible to construct your configuration such that common

elements are held in shared locations, and those locations referenced using built-in substitution values.

There is considerable flexibility in how Liberty Profile may be configured and operated. This is one example.

Unit 3 - Server Models

Unit 3 - 50

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
50

Version 8.5.5 Collectives
Collectives are groupings of Liberty Profile server instances for the purposes of
management and monitoring. Collectives may be accessed through a controller:

JConsole …

Liberty Profile

Collective
Controller

Liberty Profile

Collective
Member

Liberty Profile

Collective
Member

Liberty Profile

Collective
Member

Member of the
management collective,
but not clustered

Membesr of the
management collective,
and also clusteredA controller is a Liberty

Profile server instance that
takes on the role of

interfacing to the server
instances in the cluster

Multiple controllers may
be configured to provide

availability

Jython

Java
Client

JConsole

service:jmx:rest://<host>:<port>/IBMJMXConnectorREST

JMX (REST/HTTP)

With Liberty Profile as delivered in V8.5.5 there is a new management construct provided to make administration

of multiple Liberty Profile server instances better and more efficient.

In V8.5 it was possible to create a number of Liberty Profile server instances and they could have some

association with one another, as we showed in the previous chart with the 100 servers all operating cooperatively

with shared configuration elements. Nice, but it left you the administrator having to individually manage each for

functions such as starting and stopping and any changes to the server-specific configuration files.

With V8.5.5 the concept of a collective has been introduced. A collective is a grouping of Liberty Profile server

instances that may be managed through a collective controller. A controller is another Liberty Profile server

instance configured to serve the role of controller. Liberty Profile servers that are members of the collective signal

their intent to be members through a bit of XML in the server.xml file that indicates host and port of the

controller. The server signals to the controller and the controller then understands who is in its collective.

You then interface to the collective through the controller using one of the methods shown on the chart -- a Jython

script, a JConsole session, or your own Java client. Local or RESTful connectors are used to connect to the

controller, which then routes the JMX requests to the target collective member to take the action specified -- start

server, stop server, get information about a server, transfer a file from a server or transfer a file to a server.

Note: unlike traditional WAS with its Node Agent design, this collective has no agents. The communication is

direct between the controller and the members of the collective.

Members of a collective are not reliant on the controller to operate. So a controller can be down and the server

members will still function. That said, having a highly available controller is desirable, so multiple copies of a

controller can be started and they will share information about the members they are helping manage.

Finally, Liberty Profile 8.5.5 has the concept of a cluster, which is a grouping of server instances for the purposes

of hosting applications in a highly available manner. Liberty Profile 8.5 allowed you to have multiple servers with

the same application, but that was it. With Liberty 8.5.5 there's now caching that can be shared across cluster

members, as well as the ability to use a HTTP Server Plugin to distribute work to Liberty cluster members.

Unit 3 - Server Models

Unit 3 - 51

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
51

Version 8.5.5 Collectives - JConsole Example
JConsole provides a GUI interface to issue JMX commands to the controller, which then
routes to the target member or cluster:

Angel process …

JConsole showing the
mBeans explosed by the
JMX RESTful interface of

the controller

You can start or stop
members behind the

controller using the Server
Commands mBean

The "startServer" mBean
 has four attributes ...

three required and one
for optional values.

Your Java client or Jython scripts would do essentially the same
thing -- connect to the Controller JMX interface and invoke the

mBeans to perform the operations supplied by the mBeans

rwlp_mbeans_listInfoCenter

This chart is showing an example of what JConsole looks like when conntected to a controller and the "mBeans"

tab is expanded. Here we're showing the "ServerCommands" mBeans expanded out, with "startServer"

highlighted. Using this console, you can specify the server you wish to start. The command is passed to the

controller, which then issues the command to start the server.

A Jython script or your own Java client would do the same thing -- use the JMX interface of the controller to invoke

the mBeans to perform the specified actions. JConsole provides a relatively simple interface to the controller

mBeans; your own Java client could be far more sophisticated, as could Jython scripts.

Many mBeans are provided -- not just starting and stopping servers. The "InfoCenter" tag in the lower left of the

screen provides a search string to use in the 8.5 InfoCenter to see a reference list of provided mBeans.

Unit 3 - Server Models

Unit 3 - 52

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
52

The "Angel" Process and its Role with Liberty
The Angel process provides an anchor point for access to z/OS authorized services.
There are several important things to note about the Angel process:

z/OS extensions …

Liberty Angel
Process

BBGZANGL start procedure

●Not strictly required
Only required if there's a Liberty server instance on the LPAR that requires access to
z/OS authorized services

● If needed, then only one per LPAR
Whether one Liberty server instance or a thousand

●Very lightweight
Very little memory, almost no CPU once started, no TCP ports, no configuration files

●Access to authorized through SERVER profiles
Small handful of SERVER profiles to set up ... you grant READ to server ID

●Services: SAF, WLM, RRS, z/OS DUMP
Of those, only RRS and z/OS DUMP require Angel process; SAF and WLM will work
without but not as efficient as authority check then done for every call rather than once

There is one more piece to this puzzle, and it's called the "Angel process" (not to be confused in any way with the

traditional WAS z/OS Daemon). The Angel process provides an anchor point for access to z/OS authorized

services. As such the Angel process is optional -- if no servers need to use z/OS authorized services then you do

not need the Angel process; and even if some do require access to the z/OS extensions some of those do not

require authorized access. It's only required when you have servers that require authorized access.

If needed, then only one is needed per z/OS LPAR, regardless of the number of Liberty Profile server instances on

the LPAR.

It's very lightweight. It takes very little storage and almost no CPU once started. It requires no TCP ports. It's

started and just sits there. But it sits there and provides the anchor point for authorized access.

Access to z/OS authorized services is provided via SAF SERVER profiles. There's a handful of such profiles very

clearly document in the InfoCenter. We'll give you a sense for this on the next chart.

The services that might require or benefit from the Angel process are shown on the last bullet of the chart. These

are the z/OS extensions implemented in the WAS V8.5 Liberty Profile for z/OS. Of those, only RRS and DUMP

require the Angel. SAF and WLM have unauthorized access paths, but that implies an authority check for each

call and that implies some inefficiency. Having authorized access eliminates that overhead. So while the Angel

process is not strictly require, it might be beneficial from a performance perspective to have it for SAF and WLM.

Unit 3 - Server Models

Unit 3 - 53

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
53

z/OS Extensions to the Liberty Profile
A brief summary of the specific exploitation of z/OS functions provided by Liberty when
run on the z/OS platform:

Summary …

SAF

● Use SAF for authentication repository (userid and passwords)

● Use SAF for trust and key store (digital certificates)

● If Angel, then SERVER profile: BBG.AUTHMOD.BBGZSAFM.SAFCRED

WLM

● Provide transaction classification (TC) to work requests

● Elements in server.xml provide classification rules (not separate XML file like trad. WAS z/OS)

● Common use-case: provide separate reporting classes for work

● If Angel, then SERVER profile: BBG.AUTHMOD.BBGZSAFM.ZOSWLM

RRS

● Use for JDBC Type 2 with RRS for transaction management

● Angel process required for this

● SERVER profile: BBG.AUTHMOD.BBGZSAFM.TXRRS

DUMP

● Provides ability MODIFY request for SVCDUMP or Java Transaction (TDUMP)

● Angel process required for this

● SERVER profile: BBG.AUTHMOD.BBGZSAFM.ZOSDUMP

This chart summarizes the z/OS extensions. Configuration examples are provided in the WP102110 Techdoc at

ibm.com/support/techdocs.

Unit 3 - Server Models

Unit 3 - 54

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
54

Summary of Unit

Two fundamental server models:
● "Traditional" WAS z/OS -- the multi-JVM, CR/SR model

● New "Liberty Profile" ... enhanced in V8.5.5

Traditional WAS z/OS:
● CR does request handling, SR hosts applications and data access

● WLM work queueing betweeen CR and SRs

● Classification file enables multiple service classes and reporting classes

● Classification file extension to support Granular RAS function

Liberty Profile
● Packaged / delivered with WAS V8.5 ... operationally different from trad. WAS

● Lightweight, composable function, dynamic updates

● Web applications in V8.5, enhanced in V8.5.5 with EJB Lite and much more

● z/OS extensions to exploit SAF, WLM, RRS and z/OS DUMP

And the summary to this unit.

End of UnitEnd of Unit

