
Unit 1a - Overview

Unit 1a - 1

© 2013 IBM Corporation
IBM Advanced Technical Skills

WBSR85
WebSphere Application Server z/OS V8.5

Unit 2 - Administration Model

WebSphere Application Server V8.5 for z/OS

WBSR85
Unit 2 - Administrative Model

Unit 2 - Administrative Model

Unit 2 - 2

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
2

This page intentionally left blank

Unit 2 - Administrative Model

Unit 2 - 3

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
3

High-Level Conceptual Picture

CR SR

DMGR

CR

Node Agent

This provides the framework of our focus areas this unit:

CR SR

AppServer

1

2

2

Scripting
Client

3

4

4

These are the topics we'll cover in this unit

Administrative
Console

1

Configuration File
Systems for each
Node

2

WSADMIN
scripting interface

3

Logging and
tracing and HPEL

4

The administrative model focus we'll focus on in this unit spans four things:

1. Administrative Console -- the browser-based interface to the administrative application that runs in the

Deployment Manager. Our objective will be to provide a quick review and offer insights into where z/OS-

specific things begin to surface.

2. Configuration file systems -- each node has a configuration file system, and there's a relationship between

the configuration file system and the product file system. We'll explore the structure of the configuration file

system and review the concept of "intermediate symbolic links," which provide a degree of isolation between

nodes for the purposes of maintenance.

3. WSADMIN scripting -- WAS provides a programmatic interface to the administrative function. It is called

WSADMIN. The scripting language it supports is Jython (JACL as well, but our focus will be Jython).

4. HPEL logging -- we mentioned HPEL in the first unit. We'll go a little deeper here and explore what it looks

like, how you configure it, and how you can use it.

Unit 2 - Administrative Model

Unit 2 - 4

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
4

Admin Console

Unit 2 - Administrative Model

Unit 2 - 5

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
5

Left-Side Navigator Bar for V8.5 Admin Console
At this level the Admin Console is common across all platforms. The areas of focus for
us in this workshop are indicated below:

Commonality …

Administration of servers in
cell

Deploying and managing
applications
Including application editioning

Configuring access to data
resources

Setting environment

variables

Administration of nodes,
Node Agents and the DMGR
Including repository checkpointing

Configuring logging and
tracing

Configuration of the
SIBus inside of WAS

Performance
Monitoring Tools

With SAF in effect
these roles are ignored

Focus of WSW08
workshop

Web Services

Previous "Job
Manager" function

Virtual Enterprise
Function

More Virtual
Enterprise Function

The Administrative Console, or "Admin Console" for short, is a browser interface to the administrative function. It

is in many ways common across all platforms, though z/OS specifics do surface at certain points.

The browser interface is frames-based, with an expandable navigation tree down the left side and a main body

frame to the right. A bitmap of the V8.5 Admin Console navigation tree is shown above with what we'll cover

outlined with the dashed boxes and described to the right, and those things we won't cover briefly described to the

left.

Unit 2 - Administrative Model

Unit 2 - 6

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
6

Degree of Commonality Across Platforms
Is actually fairly high ...

Platform specifics …

Servers and Clustering
Very common until you get to things like server
short names and the Multi-JVM model

Applications
Identical across platforms

Web Services
Identical across platforms

Security
Fairly common with the exception of definitions to
allow use of SAF

Environment
Interface is identical. Some of the variables you
enter may be z/OS-specific.

Resources
Very common until you get to the definition of
local adapters and native libraries

System Administration
Very common with the exception of the "z/OS
location server" under "Node Groups"

SIBus
Identical across platforms

The Admin Console has a high degree of commonality across platforms. The chart above attempts to give a

sense for the degrees of commonality by functional area of the Admin Console.

Where z/OS-specific things surface it is because there's some element of WAS configuration that requires a z/OS-

specific piece of information. For example, with servers and clustering WAS z/OS surfaces "short" names. (Short

names are a way to accomodate the decades-old restriction z/OS has with 8-character names. Short names

provide a way to map WAS elements down onto z/OS 8-character names.) The multi-JVM model of WAS z/OS

also comes to light when you drill down into the server JVM structure on WAS z/OS.

But applications and Web Services are entirely common across platforms.

Security brings some z/OS things to the surface.

The point here is that WAS administrators familiar with the Admin Console on other platforms will find

considerable comfort when they see the Admin Console on z/OS. It looks and operates in very much the same

way.

Unit 2 - Administrative Model

Unit 2 - 7

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
7

Examples of Platform Specifics Surfacing
A brief sampling of where some z/OS platform specifics surface in the Administration
Console:

Updating XML …

Under a given application server:

Under Global Security:

Under the integrated Java Batch configuration:

Short names are
exclusive to z/OS The Multi-JVM model

is only on z/OS

The start command for
the server is specific to

the platform

A section on z/OS-
specific security

settings and properties

Exploit z/OS SMF
if you wish

Point here is that while the
Admin Console has a great

deal of commonality, you can
find differences the closer to

the platform you get

This chart shows some examples of where z/OS specific things come to light. Under the application server the

"General Properties" panel will have the name of the server (which is common across platforms, but on z/OS we

call it the "long" name to differentiate it from the short name), as well as the short name we discussed on the

previous panel. The short name is limited in length as an accomodation to length limitations in z/OS. The short

name also maps to key z/OS constructs such as RACF profile names.

The multi-JVM model shows up when you drill down to the "Process definition" of a server. On distributed you

would see one JVM, but on z/OS you see three -- Adjunct, Control and Servant. (The Adjunct server is used when

the SIBus is configured for messaging. The controller and servant we'll cover in greater detail in the next unit.)

WAS maintains the command string used to start the server, and on z/OS it does this as well. But the start string

for z/OS is considerably different than for distributed. Here we see a very z/OS-specific value with the JCL start

procedure name, the MVS JOBNAME specification and an environment string that's used to specify the server to

be started.

Under security we see there's a link for z/OS security options. This is used to map WAS security constructs to

z/OS security in SAF.

Finally, WAS has incorporated into it Java batch function (it's under "System Administration") and there you'll see a

checkbox for SMF usage. SMF is a z/OS-only function. So it is yet again an example of z/OS specific elements

coming to the surface.

But overall the Admin Console for WAS z/OS is like the Admin Console on other platforms. Common things like

deploying servers or setting environment variables is exactly the same.

Unit 2 - Administrative Model

Unit 2 - 8

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
8

Administrative Application - Smart XML Updater
It does other things, but a large portion of the Administrative Application's function is to
know how to translate mouse clicks into XML updates:

Config file system …

Which XML files not always obvious

Often more than one XML file needs updating

You could try to do this yourself ...

Better to allow administrative function to do it

/DeploymentManager

 /profiles

 /default

 /config

 /cells

 /nodes

 /servers

/<mount_point>

XML files

XML files

XML files

CR SR

DMGR

 File Updates

UNIX Systems Services (USS)
file system (HFS or ZFS)

We like to say that the Admin Console (and more precisely, the administrative function behind the browser

interface that is the Admin Console) is really a very smart XML updater function. We say that because the various

mouse-clicks and keystrokes you use in the Admin Console ultimately get placed into XML files down in the

configuration file system.

WAS's view of its world -- the entirety of its knowledge about its configuration -- is contained in the configuration

file system. If you add to or update that world through the Admin Console, your updates are propagated down into

XML so WAS can be aware of the changes.

It might be tempting to think this means you can accomplish configuration updates by manually updating XML.

The problem with that is several-fold -- first, it's not always obvious which XML files are to be updated. The

administrative function knows ... it's smart, as we said. Second, many changes result in multiple updates across

multiple XML files. Unless you know where all the updates are to be made you might well leave something out

and then WAS will have trouble. It is far, far better to allow the administrative function to make these changes.

Note: there may be times when IBM Level 2 support indicates a manual change to an XML file is in order. If so,

then follow their directions. But otherwise, do not make manual changes to configuration XML files.

Unit 2 - Administrative Model

Unit 2 - 9

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
9

Configuration File System

Unit 2 - Administrative Model

Unit 2 - 10

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
10

Each Node Has a Configuration Structure
In a Network Deployment (ND) configuration, each node has its own configuration file
structure. DMGR owns the "master" and nodes are subordinate to that:

Common file system layout …

CR SR

DMGR

Managed Node Managed Node

Deployment Manager Node

Master Configuration
● Is maintained in a USS file system (HFS or ZFS)

● Is updated by the Administrative Application

● Has all the information about the whole cell

● Updates to master are propagated to each node
via act of synchronization

Node Configuration
● Is maintained in a USS file system (HFS or ZFS)

● Can be in same file system as DMGR, but we
recommend separate for each node

● Is updated by the Node Agent during
synchronization

● Has all the information its node

● Has some information about other nodes

In the first unit we spoke of "nodes" and how they're a collection of servers on a server box or LPAR. We were a

bit vague in why WAS has this notion of "nodes." Here we'll start to clear up the concept a bit.

WebSphere Application Server on all platforms has a "building block" approach to constructing what's called a

"Network Deployment" configuration -- that is, a configuration that has a Deployment Manager and servers on

several servers or LPARs. That building block approach involves (a) creating the DMGR, (b) creating a node and

joining it to the DMGR, and then (c) repeating step "b" as many times as you need to construct the desired

topology.

And therein lies the key point -- the construction of a node on z/OS involves the running of batch jobs that create a

configuration file system and populate it with directories and XML files customized to your specifications.

Therefore, each node has a configuration file system associated with it. That's true of application server nodes

(called "managed nodes" because they're managed by a DMGR), as well as the DMGR itself. The picture shows

an example of this -- a DMGR with a configuration file system (called the "master configuration") and two

managed nodes, each with a configuration file system.

Note: on z/OS in a Sysplex it is possible to have one very large USS file system that holds all three nodes in this

example. We do not recommend that for a number of reasons. We recommend each node have its own

separate file system.

The master configuration holds information about everything ... the DMGR as well as every managed node. Each

node's configuration file system holds complete information about itself and at some information about the other

nodes. As noted earlier, updates made through the administrative function are written first to the master

configuration, then copied out to the nodes through the act of synchronization.

Unit 2 - Administrative Model

Unit 2 - 11

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
11

How We Generally See the File Systems Deployed
Here's a picture that shows how the file system would be created and mounted based
on the jobs generated using the PRS4686* planning spreadsheets:

DMGR file system …

/ (root) Root file system is typically relatively small

/wasv85config We recommend a version directory with it's own relatively small file
system so the root is not exposed to writes and out of space issues

/aacell

/nncell

We recommend a cell directory file system for each cell so the ID

"home" directories can be built here and house any Java dumps

/aadmnode

/aanodea

/aanodeb

These are the file systems
created by the generated jobs
Config and cell are manually created and mounted by you

They can be quite large
depending on the number and
size of applications deployed

Owned by LPAR A

Owned by LPAR B

Owned by LPAR on

which DMGR is running

PRS4944TechDocs

V8.5 spreadsheets

What we're showing here is our recommendation for how to deploy the WAS z/OS files systems off the root. This

is how the WAS V8 planning spreadsheets will attempt to do it by default.

Imagine you have a root file system. Typically they are not very large. Generally speaking you do not want the

root file system to be exposed to getting filled up and running out of space. So we recommend you create a file

system that will mount at /wasv85config. The mount point /wasv85config will be the starting point under

which however many WAS z/OS V8 configurations you build. The file system mounted here protects the root file

system from receiving any spurious write activity from the configurations. (That's rare, but we've seen it happen

based on other problems with configurations.)

Under /wasv85config we recommend you create a mount point and a file system for each of the cells you

create. The servers run with a small set of z/OS userids which require an OMVS segment (UNIX awareness) and

a UNIX home directory. We recommend this home directory be placed under the cell directory ... that keeps the

ID home directories organized with the cells. The home directories are where any Java dumps will go, so having

them in a separate file system protects other file systems from out-of-space conditions.

Note: what we've outlined above are recommendations and not technical requirements. There's considerable

flexibility in how you design the file system layout. We find this works. And it's in common use by many WAS

z/OS customers.

Finally, under the cell directories go the node file systems. They are created by the jobs customized using the

spreadsheet and the WCT. One of the jobs allocates and mounts the file system, another populates it with key

directories and file systems. The final job makes all the updates needed to make that node fully customized to

your settings.

Unit 2 - Administrative Model

Unit 2 - 12

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
12

The Essential Structure of DMGR Configuration Tree
Here's a snapshot of some of the key elements of the configuration structure:

Node file system …

/wasv85config/aacell/aadmnode/DeploymentManager

 /bin

 /installableApps

 /java

 /java64

 /lib

 /profiles

 /default

 /bin

 /config

 /cells

 /<cell_long_name>

 /nodes

 /<node_long_name>

 /servers

 /<server_long_name>

 /logs

 /properties

 /wstemp

XML Files

XML Files

XML Files

Deployment Manager's
mount point and root

Java symlinked from here

Shell scripts, JAR
files and shared
object modules

logs -- where things like WSADMIN logging goes
properties -- key properties files for functions and activities
wstemp -- temporary directory that you can clean periodically

Other platforms use "profiles" to allow multiple cell configurations in the same install

root. But on z/OS we separate configuration from install so one profile is sufficient

Identical to distributed in
basic structure; different in
certain ways we'll show

This is the heart of it

All the nodes and all the servers
and their properties for the whole
cell represented here

We'll now take a look at the Deployment Manager's "master configuration" and the structure you'll find inside that.

This is not an exhaustive picture. There are literally hundreds of directories and thousands of files. The picture

illustrates a high level.

The /bin and /lib directories are where shell scripts, jar files and shared object files are located. But they're

not physically there ... what's in those directories are symlinks over to the actual files housed in the product file

system ... the hlq.SBBOHFS we spoke of earlier. The same holds true for the /java and /java64 directories.

They have symlinks because it allows common product files to be housed in one place (hlq.SBBOHFS) with many

nodes simply linking over to them. We'll explore this symbolic link structure in a bit, and as part of that we'll

discuss intermediate symbolic links which provide a way to isolate nodes for maintenance purposes.

Down under /profiles/default you'll being to see the cell's configuration tree. WAS z/OS has one profile

because it separates the product install root from the configuration install root. WAS z/OS does not need to create

different profiles for each cell. Each cell uses /default and simply links over to the product install root.

Here's where we start to see where the long names are used as part of the configuration structure. This is

common across all platforms. The long names are used as directory names. XML files for the cell level are kept

under the cell long name directory; XML files for each node are kept under that node's long name directory; and

the same holds for servers.

Down at the bottom we see some directories for logs and properties files. The /wstemp directory is used to hold

temporary administrative files. Over time this gets cluttered and you may go in and clean out directories

This picture is representing the DMGR's master configuration. As such it holds a picture of the entire cell, and

includes every XML file for every node and server in the whole cell. On the next chart we'll see how each node

has a similar file system, but without everything for everybody.

Unit 2 - Administrative Model

Unit 2 - 13

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
13

Each Managed Node Has Similar Configuration
The key difference is in that it maintains only partial awareness of other nodes but full
awareness of itself:

Relationship to install image …

/wasv85config/aacell/aanodea/AppServer

 /bin

 /installableApps

 /java

 /java64

 /lib

 /profiles

 /default

 /bin

 /config

 /cells

 /<cell_long_name>

 /nodes

 /<node_long_name>

 /servers

 /<server_long_name>

 /logs

 /properties

 /wstemp

XML Files

XML Files

XML Files

It will have a directory for each
node. Other nodes have some
meta-data files that provides the

partial information.

But the node directory for itself
and the servers under it are fully
populated with detailed XML

The mount point and the node root are
different because this is a different node

from the Deployment Manager node

/AppServer

 /profiles

 /default

/AppServer

 /profiles

 /default

/DeploymentManager

 /profiles

 /default

A very similar picture to the previous chart but with some differences. The mount point is different ... rather than

being the mount point for the Deployment Manager, this reflects the mount point for the specific node. And further

down you'll find that the node and server directories map to the node and long names for this node, but information

about other nodes is considerably less detailed. There's some information about other nodes, but in general each

node knows full well about itself, but only something about the other nodes.

The little graphic shows the orientation of the file systems -- one for the DMGR, then one for each node. The

DMGR file system is "master" in that it has information about everything. Each node has information about itself

and at least some awareness of others nodes.

Unit 2 - Administrative Model

Unit 2 - 14

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
14

Relationship to "Install Image"
The "install image" is the file system that contains the product binaries. The
configuration file systems link to that via symbolic links:

Intermediate symlinks …

/wasv85config/aacell/aadmnode/DeploymentManager

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/wasv85config/aacell/aanodea/AppServer

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/wasv85config/aacell/aanodeb/AppServer

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/usr/lpp/zWebSphere/V8R5M0

 /bin

 /java

 /lib

 /profiles

 /default

 /config

Symbolic Links

Symbolic Links

Symbolic Links

But this is not quite the total picture ...

"Product File System"

We mentioned earlier how many of the directories and files in the configuration file system are really just symbolic

links to the product file system. That's done because duplicating every file in every node configuration file system

would waste storage space and complicate maintenance considerably. So the symbolic links are there that point

to the location of the comparable directories in the product file system.

Note: one difference between WAS z/OS V7 and V8 is that many of the symlinks are now moved up to the

directory level whereas before they were file by file. That bit of information has very little impact on your life as a

WAS administrator, but we offer it as a bit of trivia and so you understand why things might look a little different.

But this picture is not the total picture as we recommend it be drawn. If we ended this discussion with this picture

you'd be left with an environment where maintenance applied to the product file system would result in updates to

all the symlinked nodes. If you're looking to "roll" maintanence through a Sysplex environment this "big bang

update" is definitely not what you want. You'd want more isolation. Which is why we have the concept of

intermediate symbolic links, which is explained next.

Unit 2 - Administrative Model

Unit 2 - 15

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
15

Intermediate Symbolic Links
We've taken this symlink structure one step further by introducing an "intermediate
symbolic link" for each node between the node and the install image:

Repository Checkpoints …

/wasv85config/aacell/aadmnode/DeploymentManager

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/wasv85config/aacell/aanodea/AppServer

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/wasv85config/aacell/aanodeb/AppServer

 /bin

 /java

 /lib

 /profiles

 /default

 /config

/dmgr_link

/nodea_link

/nodeb_link

/usr/lpp/zWebSphere/V8R5M0
 /bin

 /java

 /lib

 /profiles

 /default

 /config

"Swing" the node
to the new service
level by changing

intermediate
symlink to point to
new install image

Symlink

Symlink

Symlink

Symlink

Symlink

/usr/lpp/zWebSphere/V8R5M1

 /bin

 /java

 /lib

 /profiles

 /default

 /config

Product at 8.5.0.1

Product at 8.5.0.0

Symlink

Symlink

Intermediate symbolic links are just that ... symbolic links that sit at a spot between the configuration file system

and the product file system. The benefit of this is it provides a way to change the product file system linked to on a

node by node basis rather than having a "big bang" update across all symlinked nodes.

Note: The Planning Spreadsheet and the WCT tool support the concept of intermediate symbolic links. The

customized jobs that are produced by the WCT will create the intermediate symlinks based on the input the WCT

receives from the spreadsheets. Intermediate symbolic links are a fairly mainstream thing with WAS z/OS.

Imagine you use Installation Manager (IM) to create a new hlq.SBBOHFS at the 8.0.0.1 fixpack level. and you

copy that out of your /SERVICE zone to a mount point that reflects the WAS level. To change one node to the

new level of WAS you would simply stop the servers in that node, delete the intermediate symlink and recreate it

so it points to the new WAS 8.5.0.1 product file system mount point. Then when the first control region in that

node starts it'll spot the new level of was and run the applyPTF.sh update shell script and update the

configuration file system so it matches the level of WAS it sees in the target.

Unit 2 - Administrative Model

Unit 2 - 16

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
16

Repository Checkpoints in Concept
It's fairly simple ... the Admin function now provides a way to "take a snapshot" of the
master configuration and restore back to previous snapshots if you wish:

Taking a repository checkpoint …

CR SR

DMGR

Managed Nodes

Deployment Manager Node
/wasv85config/aacell/aadmnode

 /DeploymentManager

 /profiles/default

 /checkpoints

 /Checkpoint_1

 /cells/aacell...

 /config

 /cells/aacell...

All configuration
files copied

Checkpoint name
you provide

Notes:
● Checkpoint is performed through Admin Console*

● Location where checkpoints stored is configurable

● Multiple checkpoints possible

● Restore selected checkpoint through Admin Console*

* or WSADMIN

With WAS V8.5 (all platforms) comes a function that was originally part of the Virtual Enterprise product. It

provides a way of taking a "repository checkpoint," which is a saved snapshot of the master configuration

repository. You may then restore back to a known checkpoint if you determine the changes you've made since

that point are not desired.

In concept it's relatively simple ... this operates in the Deployment Manager's "master configuration" and a

checkpoint is a snapshot copy of all the configuration artifacts (directories and files) under the /cells directory

for the cell. The checkpoint is kept under a configurable location and under a checkpoint name you may set.

You may maintain multiple checkpoints and restore back to any of the checkpoints that you have saved.

Unit 2 - Administrative Model

Unit 2 - 17

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
17

Admin Console for Repository Checkpoints
Some bitmap captures that illustrate the process of taking a checkpoint backup:

Restoring a saved checkpoint …

Checking this box means

automatic checkpoints are
taken after every change.

Up to configured number of
checkpoints kept, then

oldest discarded.

Checkpoints may then be "restored" to fall back to a previous
configuration checkpoint. Configuration reverts to those settings.

Current location plus field
to configure location

Name and description
of your choosing

This chart shows the sequence of Admin Console clicks you would use to take a repository checkpoint.

There is an option to have the administrative function take automatic checkpoints. Every time you make a change

it would take a checkpoint, and it would maintain up to the configured number of delta checkpoints. Once the

configured depth is reached, then the older checkpoints are discarded.

Note: this "checkpoint depth" concept applies only to automatic checkpointing. Manual checkpointing, which is

what the chart is illustrating, has no limit. You may maintain as many checkpoints as you have storage resources

to hold the checkpoints. And the checkpoints may be configured to go to a location outside of the DMGR's

configuration file system, so it's possible to maintain a very large file system at an external location and hold a

great many configuration checkpoints.

Unit 2 - Administrative Model

Unit 2 - 18

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
18

Restoring Checkpoints
A couple of notes regarding this ...

MODIFY command …

Restoring means the checkpoint configuration
files and directories are copied back to the
master configuration's /config/cells path

Updates to node configuration file systems
through normal synchronization process
Process will synchronize with the nodes if auto-synchronize is set for the Node Agents.
If not, remember to manually synchronize to the nodes.

You may need to log off the Admin Console and
back on to see the restored configuration
artifacts in the Admin Console display

Restore puts configuration files back in place, but
it does not restart servers or applications that
were deleted and then restored

You should still have a solid backup/restore
process in addition to this checkpoint function

The taking of a checkpoint implies copying directories and files to a checkpoint location. Restoring the checkpoint

implies copying those checkpoint files back to the normal /config/cells location in the master configuration.

If you made changes that were synchronized out to the node configuration file systems, them restoring a

checkpoint implies the undone changes needing synchronizing out as well. If automatic synchronization is turned

on then the system will take care of that when you restore a checkpoint. But if you have automatic synchronization

turned off, then it'll be up to you to manually synchronize the restored configuration back to the nodes.

Restoring copies files back, but it does not restore operational state. The best way to understand this is to think of

a scenario:

● You take a checkpoint of a configuration that has a server and an application

● You delete the server and the application ... moments later you say "ooops" ☺

● You then restore the checkpoint, which restores the server and the application

● You will find the configuration is restored, but the server is not started nor is the application started

So when you restore a checkpoint you may need to sweep through and start servers or applications to get the

operational state of the environment back to where you need it.

Unit 2 - Administrative Model

Unit 2 - 19

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
19

z/OS MODIFY

Unit 2 - Administrative Model

Unit 2 - 20

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
20

MODIFY Facility of z/OS Operating System
MODIFY is a means of dynamically displaying information about started task, or
dynamically updating the runtime settings for that started task

First 18 commands …

F <jobname>,keyword,keyword...

CR SR

Server

F Z9SR01A,HELP
F Z9SR01A,HELP

BBOO0178I THE COMMAND MODIFY MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I CANCEL - CANCEL THIS CONTROL REGION

BBOO0179I TRACEALL - SET OVERALL TRACE LEVEL

 :

BBOO0179I DISPLAY - DISPLAY STATUS

 :

BBOO0179I WLM_MIN_MAX - RESET WLM MIN/MAX SERVANT SETTINGS

BBOO0179I RECLASSIFY - RE-PROCESS WLM CLASSIFICATION FILE

 :

BBOO0179I FAILOVER - FAILS OVER CONNECTIONS FOR RESOURCE IDENTIFIED BY GIVEN JNDINAME

BBOO0179I FAILBACK - FAILS BACK CONNECTIONS TO RESOURCE IDENTIFIED BY GIVEN JNDINAME

Example of output generated by simply
specifying HELP on the MODIFY

35 MODIFY commands for WAS z/OS

18 DISPLAY options

rxml_mvsmodifyInfoCenter

The z/OS operating system has for a very long time now provided a means of issuing operator commands against

jobs and started tasks to either modify the runtime behavior or to display information about the task. WAS z/OS

takes advantage of this and provides a rich set of MODIFY commands.

The z/OS command for MODIFY is "F" -- "M" having been reserved for a different function. The command is

issued against a particular server JOBNAME, and takes as parameters a string of comma-separated keywords.

A good place to start with MODIFY is the HELP keyword. This will display a list of available MODIFY commands

acceptable for use against the jobname supplied. For WAS z/OS V8 you will see 35 such MODIFY commands.

One of those commands is DISPLAY, which itself has 18 options.

In short, there's a great deal of power and information you can derive from the MODIFY command of WAS z/OS.

The key here is not to make you an expert in all of those commands. Rather, we will take you on a brief survey of

the commands and point you to the InfoCenter article that details each and every command.

Unit 2 - Administrative Model

Unit 2 - 21

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
21

MODIFY Commands, Part 1
Here's the first 18 of 35 MODIFY commands available with WAS z/OS V8:

Next 17 commands …

CANCEL - CANCEL THIS CONTROL REGION

TRACEALL - SET OVERALL TRACE LEVEL

TRACEBASIC - SET BASIC TRACE COMPONENTS

TRACEDETAIL - SET DETAILED TRACE COMPONENTS

TRACESPECIFIC - SET SPECIFIC TRACE POINTS

TRACEINIT - RESET TO INITIAL TRACE SETTINGS

TRACENONE - TURN OFF ALL TRACING

TRACETOSYSPRINT - SEND TRACE OUTPUT TO SYSPRINT (YES/NO)

DISPLAY - DISPLAY STATUS

TRACE_EXCLUDE_SPECIFIC - EXCLUDE SPECIFIC TRACE POINTS

JAVACORE - GENERATE JVM CORE DUMP

HEAPDUMP - GENERATE JVM HEAP DUMP

JAVATDUMP - GENERATE JVM TDUMP

TRACEJAVA - SET JAVA TRACE OPTIONS

TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE (YES/NO)

MDBSTATS - MDB DETAILED STATISTICS

PAUSELISTENERS - PAUSE THE COMMUNICATION LISTENERS

RESUMELISTENERS - RESUME THE COMMUNICATION LISTENERS

rxml_mvsmodifyInfoCenter

Specifying ,HELP on many
these will then display the

parameters acceptable for
that particular command

We'll focus on the DISPLAY
command in a moment

The list of MODIFY commands produced with HELP is too long to show on one page without the font becoming

too small to read. So we'll split this across two pages.

As you see, the MODIFY,HELP command produces a brief description of what the command achieves.

Many of these commands have required parameters. You may see a list of those by supplying ,HELP after the
command ... for example, F Z9SR01A,DISPLAY,HELP will list all the DISPLAY command parameters.

Alternatively, you may go to the InfoCenter article shown and see the same information provided there.

Speaking of DISPLAY, we will provide some additional focus on that MODIFY command because it provides a

very nice set of information about your server. But first, the final 17 MODIFY commands ...

Unit 2 - Administrative Model

Unit 2 - 22

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
22

MODIFY Commands, Part 2
Here's the final 17 of 35 MODIFY commands available with WAS z/OS V8:

DISPLAY …

STACKTRACE - LOG JAVA THREAD STACK TRACEBACKS

TIMEOUTDUMPACTION - SET TIMEOUT DUMP ACTION

TIMEOUTDUMPACTIONSESSION - SET TIMEOUT DUMP ACTION SESSION

TIMEOUT_DELAY - SET TIMEOUT DELAY VALUE

WLM_MIN_MAX - RESET WLM MIN/MAX SERVANT SETTINGS

SMF - SET SMF120 OPTIONS

DPM - DISPATCH PROGRESS MONITOR

RECLASSIFY - RE-PROCESS WLM CLASSIFICATION FILE

TRACERECORD - SET TRACE RECORD WRITE OPTIONS

MSGROUTE - SET ROUTING LOCATION OPTIONS

FORMFEED - ISSUE FORMFEED TO SYSOUT AND SYSPRINT

DISABLEFAILOVER - DISABLES FAILOVER SUPPORT FOR RESOURCE IDENTIFIED BY GIVEN JNDINAME

ENABLEFAILOVER - ENABLES FAILOVER SUPPORT FOR RESOURCE IDENTIFIED BY GIVEN JNDINAME

FAILOVER - FAILS OVER CONNECTIONS FOR RESOURCE IDENTIFIED BY GIVEN JNDINAME

FAILBACK - FAILS BACK CONNECTIONS TO RESOURCE IDENTIFIED BY GIVEN JNDINAME

SETOLATRACE - SET OLA TRACE LEVEL. SETOLATRACE=0..2, RGE | REGNAME | JOBNAME =x...x

SETOLATRACEPROPS - READ OLA TRACE PROPERTIES FILE

rxml_mvsmodifyInfoCenter

Specifying ,HELP on many
these will then display the
parameters acceptable for

that particular command

Here are the final 17 MODIFY commands. Many of these we will be using in the upcoming lectures and labs.

Unit 2 - Administrative Model

Unit 2 - 23

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
23

The DISPLAY Command
A particularly useful MODIFY command is DISPLAY, which has keywords that allow you
to display specific information about the server:

WSADMIN …

F Z9SR01A,DISPLAY,HELP

BBOO0178I THE COMMAND DISPLAY, MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I SERVERS - DISPLAY ACTIVE CONTROL PROCESSES

BBOO0179I SERVANTS - DISPLAY SERVANT PROCESSES OWNED BY THIS CONTROL PROCESS

BBOO0179I LISTENERS - DISPLAY LISTENERS

BBOO0179I CONNECTIONS - DISPLAY CONNECTION INFORMATION

BBOO0179I TRACE - DISPLAY INFORMATION ABOUT TRACE SETTINGS

BBOO0179I JVMHEAP - DISPLAY JVM HEAP STATISTICS

BBOO0179I WORK - DISPLAY WORK ELEMENTS

BBOO0179I ERRLOG - DISPLAY THE LAST 10 ENTRIES IN THE ERROR LOG

BBOO0179I MODE - DISPLAY THE EXECUTION BITMODE

BBOO0179I THREADS - DISPLAY THREAD STATUS

BBOO0179I ADAPTER - DISPLAY OLA ADAPTER STATUS

BBOO0179I OLATRACE - DISPLAY ADAPTER TRACE RECORDS. OLATRACE=* or jobname

BBOO0179I WLM - DISPLAY WLM SETTINGS

BBOO0179I SMF - DISPLAY SMF120-9 SETTINGS AND STATUS

BBOO0179I FRCA - DISPLAY FRCA INFORMATION

BBOO0179I DPM - DISPLAY DISPATCH PROGRESS MONITOR SETTINGS

BBOO0179I TRACERECORD - DISPLAY TRACERECORD SETTING

BBOO0179I MSGROUTE - DISPLAY MESSAGE ROUTING SETTINGS

Specifying ,HELP on
many these will then

display the parameters
acceptable for that

particular command

The DISPLAY command is of particular interest because it provides you with information about your server. There

are 18 DISPLAY commands provided in WAS z/OS V8.

Again, many of these have required parameters. To see what those parameters are you may issue a ,HELP after

the DISPLAY command, or go to the InfoCenter.

Unit 2 - Administrative Model

Unit 2 - 24

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
24

WSADMIN

Unit 2 - Administrative Model

Unit 2 - 25

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
25

In a Nutshell, WSADMIN is ...
... a set of interfaces to the administrative function you may use to automate tasks you
might otherwise do with the Admin Console:

Command objects …

CR SR

DMGR

Scripting
Client

Questions that spill from this:

● What is it?

● How does it work?

● What can I do with it?
WSADMIN

Script

Updates to the master configuration,

then syncronization out to the nodes

You saw how the administrative function has a browser-based interface that allows you to make configuration

updates.

WSADMIN is essentially a programmatic interface to the same administrative function. Rather than mouse clicks

at a browser screen a script invokes the programmatic interface commands to achieve the same results.

For the next several charts we're going to explain what WSADMIN is, how it works and what you can do with it. It

can be a very complex topic, depending on how detailed one wants to get. For the purposes of this workshop

we're going to touch on some of the key concepts and point you to a wealth of other documentation on the subject.

Unit 2 - Administrative Model

Unit 2 - 26

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
26

The WSADMIN Command Objects
The interface is composed of four main "objects" (commands) that provide the
administrative function:

A very simple example …

AdminApp

install

uninstall

list

options

export
... many more

AdminConfig

list

show

save

create

update

remove
... many more

AdminControl

startServer

stopServer

invoke
... many more

AdminTask
changeHostName

modifyServerPort
... many more

Think of AdminTask as commands that contain other
more "primitive" WSADMIN commands under the

wrapper. It was created as a way to make scripting
easier for common tasks ... hence the name "AdminTask"

Key Points:

● WSADMIN is a command interface

● Four major commands, each with
many sub-options

● Your script uses these commands
to make the changes you wish

The programmatic interface offered by WSADMIN comes in the form of four command objects, each with a long

list of sub-commands (or "methods") that do different administrative functions.

Note: there is in reality a fifth command object -- Help. It's not on this chart so the focus can be on those

command objects that perform the administrative functions. But do not forget about Help because it can be

useful at times.

For example, if you wanted to list all the applications in a cell you'd use AdminApp.list(). If you wanted to

uninstall an application you'd use AdminApp.uninstall(). The names of the command objects reflect what

their focus is ... AdminApp relates to applications; AdminConfig to various configuration elements; and

AdminControl to operational activities.

AdminTask is a bit unique in that what it provides is a set of pre-packaged ways to do complex things easier. For

example the changeHostName method does with one command which used to take dozens of commands before

AdminTask became available.

What's not show on this chart is an example of a Jython script that would use these commands to accomplish

some administrative task. Let's look at a very simple example of a script.

Unit 2 - Administrative Model

Unit 2 - 27

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
27

Create a "list variable" (an
array) that will hold the
server and node values

A Very Simple Example of Installing an Application
Automating the deployment of applications is a very common use for WSADMIN. Here's
an example of a Jython script that installs an application:

Slightly more advanced example …

server = 'mysr01a'

node = 'mynodea'

ear = '/u/myID/MyIVT.ear'

options = '[-node ' + node + ' -server ' + server + ']'

AdminApp.install(ear,options)

AdminConfig.save()

print AdminApp.list()

Set up a few variables to hold
the server, node and EAR file

location and name

Invoke the AdminApp object
using the install method and

pass in two parameters: the
EAR file and the list of options

Invoke the AdminConfig object
using the save method to save
changes made to the repository

Use the AdminApp object list
method to validate that the

application is indeed installed

Notes:
●This assumed all deployment defaults taken

Deployment options can be set. They become part of "options" ...
we just didn't show that to keep this example simple

●This script did not invoke synchronization
Can be done with WSADMIN ... just didn't show to keep simple

●This script did not start the application
Again, can be done with WSADMIN

Script file

This is a simple seven-line script that installs an application. It uses two command objects -- AdminApp and

AdminConfig. AdminApp is used with two different methods -- install and list.

● The first three lines establish Jython variables and place into those variables some hard-coded information.

The three variables are the server name, the node name and the path to the EAR file.

● The next line builds a Jython "list variable," which is like an array. This list variable is used to hold the option

list that AdminApp.install() needs to install an application. The list is built by inserting the option name

followed the variable that represents the option value. For example, the option list resolves to:

● -node mynodea -server mysr01a -ear

● AdminApp.install() is used to install the application. The contents of the () resolve to

/u/myID/MyIVT.ear and the option list.

● Just like in the Admin Console an application may be installed but not yet saved. That's the case here, which
is why AdminConfig.save() is used to save the changes. That method requires no options inside of (),

which is why the command is simply AdminConfig.save().

● Note: this script does not include anything to synchronize the changes to the nodes. That is possible with

WSADMIN. It's just not shown here to keep this example simple.

● Finally print AdminApp.list() prints back what WAS sees as the installed applications. This is a visual

validation that the installation was successful.

There's a lot of caveats around this ... which the chart calls out. This is a very simple example that shows the

basic usage of a few command objects.

Let's look at a slightly more sophisticated example.

Unit 2 - Administrative Model

Unit 2 - 28

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
28

Building the application
install options list array

The App Install Script from Upcoming Lab
Uninstalls app if already present, then installs the named application again:

WSADMIN client …

import sys

Uninstall the app if it is there

application = ""

applicationlist = AdminApp.list().splitlines()

for application in applicationlist:

 if application == "SuperSnoop":

 print "Found and uninstalling " + application

 AdminApp.uninstall(application)

 AdminConfig.save()

 if application != "SuperSnoop":

 print "Application in list not SuperSnoop. Skipping. Name is: " + application

 continue

Install SuperSnoop

application = "SuperSnoop"

print "Installing application " + application

earfile = "/wasetc/was8lab/applications/SuperSnoopProj.ear"

appopts = "[-appname "

appopts = appopts + application

appopts = appopts + " -MapModulesToServers [[SuperSnoopWeb SuperSnoopWeb.war,WEB-INF/web.xml "

appopts = appopts + "WebSphere:cell=z9cell,node=z9nodea,server=z9sr01a]]]"

-- debug if needed: comment out if not needed ----------

print "appopts = " + appopts

-- invoke the AdminApp.install() method ----------------

AdminApp.install(earfile, appopts)

AdminConfig.save()

print "Application installed and saved but not synchronized or started"

Brings in a set of support
functions useful to Jython

Retrieves all installed applications in
the cell. splitlines() splits into a

list that can be iterated through

Loops through list. If it finds
SuperSnoop it uninstalls it, otherwise

it notes application skipped over

F
o

r
L

o
o

p

Pointer to location of EAR

Debug print ... just to see what the option list passed
to AdminApp.install() actually looks like.

Invoke AdminApp.install() and then save the
changes to the Master. This does not synchronize.

Here is a more complex example, but not terribly more complex. This too installs an application but it has some

other Jython processing logic wrapped around it:

● The import sys at the very top is used to import into the Jython script a set of helpful scripting utilities. The

splitlines() function is one such utility. AdminApp.list() returns a simple string of installed

applications. splitlines() will do just that ... split the line into a list that can be more easily parsed and

iterated through.

● The script then drops into a "for loop" looking to see if the application "SuperSnoop" is already installed. If it is,

then it's uninstalled using AdminApp.uninstall(). Otherwise, a simple print is issued indicating an

application was found but it's not SuperSnoop.

● Then the script drops through to processing very much like the example we just showed. But the options list is

more complex. The previous simple example used the minimum options on AdminApp.install(). For

more options exist and might need to be used, depending on how complex your install is.

● The line that prints out the appopts variable is there simply as a debug step. Getting the syntax right on

option lists is required for things to work well. A printout of the variable helps you spot syntax problems.

● Finally we drop through and use AdminApp.install() and AdminConfig.save() to install and save the

changes. Here again, no synchronization is done and the application is installed but not started.

This example shows that Jython is capable of doing more than simply issuing WSADMIN commands. In fact,

Jython is capable of doing fairly sophisticated logic. And this example shows that a script might have more Jython

processing than WSADMIN processing ... the yellow blocks in the picture above show relatively little WSADMIN

command usage compared to other Jython usage.

That's a little on scripting. Proficiency comes with practice and looking at samples. But how is the script invoked

against the WAS administrative function? With the WSADMIN client ...

Unit 2 - Administrative Model

Unit 2 - 29

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
29

The WSADMIN Client Shell Script and Invocation
To use WSADMIN you must invoke the wsadmin.sh client. You pass in the script file
you have written. It then works against the interface to do the work ...

Passing in arguments …

/wasv85config/aacell/aadmnode/DeploymentManager

 /profiles

 /default

 /bin

 wsadmin.sh CR SR

DMGR

Master
ConfigurationUnconnected Mode

Manipulates the
XML directly

./wsadmin.sh -lang jython -conntype NONE -f /u/myhome/myscript.jy args

Unconnected Mode

./wsadmin.sh -lang jython -conntype SOAP

-host www.myhost.com -port 10002

-user myadmin -password myadmin -f /u/myhome/myscript.jy args

Connected Mode (Recommended whenever DMGR is available)

Or RMI or IPC with
corresponding port

Connected Mode

Use SOAP, RMI or
IPC over network

DMGR makes
the updates

WAS comes with a shell script client for WSADMIN called wsadmin.sh. This is located down in the /bin

directory. At the very highest level the shell script client takes as input parameters that indicate how it is to make

the updates (connected mode vs. unconnected mode) and what script it is to run.

Note: Truth is, the options on wsadmin.sh are a bit more flexible than this. But what we just wrote about

connected vs. unconnected and passing in a script file is the essence of it.

Connected mode implies the client establishing a network connection to a running Deployment Manager. The

updates to the XML are not made by the client but rather by the administrative function that's running in the

DMGR. The scripting client is talking to the administrative function which in turn makes the updates.

Unconnected mode is used when there is no DMGR running. The updates to the XML are made by the client by

directly manipulating the files. To use unconnected mode you must invoke the copy of wsadmin.sh that's in the

Deployment Manager's /bin directory. Connected mode may be invoked from anywhere provided there's a

network connection and the security considerations we'll explain later are met.

Important: While it is possible to use unconnected mode with the DMGR up and running, it is strongly

discouraged. The rule of thumb is this: if the DMGR is running, use connected mode. Allow the DMGR's

administrative function to coordinate and make the updates. Use unconnected mode only if the DMGR is not

running.

The chart shows the syntax for connected mode ... the shell script, followed by the scripting language, followed by

the connection type, followed by the host and port, followed by the userid and password to authenticate into the

DMGR, followed by the script file and any arguments passed into the script.

Unconnected mode is simpler ... scripting language, mode (NONE), file and arguments.

Unit 2 - Administrative Model

Unit 2 - 30

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
30

Parse the arguments and assign each to the respective Jython
variable that will be used elsewhere in the script.

Note that sequence of arguments not enforced by Jython.
You either assume it's correct or build in more error checking.

Check to see if there's enough arguments to satisfy
the script's requirements. This script expects to

see 3 variables. Check for greater than 2.

server node EAR location

Passing in Arguments to a Script
Scripts may be made even more flexible by passing in arguments on the invocation
command and using those passed-in arguments within the script

Script file character encoding …

./wsadmin.sh -lang jython -conntype SOAP

-host www.myhost.com -port 10002 -user myadmin -password myadmin

-f /u/myhome/myscript.jy z9sr01a z9nodea /u/myID/MyIVT.ear

Initialize variables

import sys

server = ""

node = ""

ear = ""

if(len(sys.argv) > 2):

 server = sys.argv[0]

 node = sys.argv[1]

 ear = sys.argv[2]

else:

 print "Not enough arguments ... exiting"

 sys.exit()

 :

 :
With arguments now held in Jython
variables you may move on to the

rest of your script processing

The previous chart suggested arguments can be passed into a script. Doing so means a script can be written to

re-usable. Hardcoding variable values in the script limits the flexibility some.

Arguments are passed into a script after all the other wsadmin.sh options are given, and after the -f switch is

used to specify the file to read in. They are passed in separated by spaces. The example shows three arguments

passed in -- server, node and EAR. They are received in the script as a special variable called sys.argv.

The chart shows some sample code to process the arguments. First the variables that will hold the passed in

values are initialized. Then some simple error checking is done -- check for the number of passed-in arguments

and if less than the expected number is seen then take an error action. This script expects three arguments. By

checking the length to make sure it's greater than 2 you capture the case of 3 and higher. If someone passes in

six arguments the processing you see here will only process the first three. The rest are ignored.

If someone passes in 2 or less then the check fails and the script exits.

Next the arguments are parsed out of sys.argv and placed in their respective variables. Notice the 0 offset used

by sys.argv. Notice also that this script assumes the sequence of the arguments is correctly passed in. If they

were supplied in a different sequence then it's quite possible an error would occur when later using the variables

with a WSADMIN command object. In this case the script is assuming things are correct. If that's not a safe

assumption, then additional error checking would be needed.

Unit 2 - Administrative Model

Unit 2 - 31

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
31

Character Encoding of the Script file on z/OS
May be either ASCII or EBCDIC. WSADMIN by default expects ASCII. If you want to use
EBCDIC you have to tell WSADMIN:

WSADMIN and JCL batch …

./wsadmin.sh -lang jython -javaoption -Dscript.encoding=Cp1047

 -conntype SOAP -host www.myhost.com -port 10002

 -user myadmin -password myadmin -f /u/myhome/myscript.jy

File stored in z/OS USS as ASCII File stored in z/OS USS as EBCDIC

By default WSADMIN expects script file
to have ASCII character encoding so
the -javaoption is not needed if ASCII

In the examples leading up to this chart we showed how the -f switch is used to point to the location of the script

file to be read in. If the wsadmin.sh script is invoked on z/OS, then that implies the script file is on z/OS as well.

And that brings up the question of character encoding of the file.

It turns out you may store the file in either ASCII or EBCDIC encoding. WSADMIN expects ASCII by default. So if

you store the file in EBCDIC you need to tell WSADMIN that. That's done with the -javaoption switch as

shown in the chart. That switch comes after the -lang switch and before the -conntype switch.

Unit 2 - Administrative Model

Unit 2 - 32

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
32

WSADMIN and Batch
JCL invoking BPXBATCH works quite well ...

Security …

//WSADMIN JOB (ACCTNO,ROOM),REGION=0M,USER=MYADMIN,PASSWORD=MYADMIN

//STEP1 EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 BPXBATCH SH +

 /wasv85config/z9cell/z9dmnode/DeploymentManager/profiles/default+

 /bin/wsadmin.sh +

 -lang jython +

 -javaoption -Dscript.encoding=Cp1047 +

 -conntype SOAP +

 -host www.myhost.com +

 -port 10002 +

 -user MYADMIN +

 -password MYADMIN +

 -f /u/myID/myscript.jy args +

 1> /tmp/myID.out +

 2> /tmp/myID.err

/*

Complete pointer to the
wsadmin.sh client

The invocation command is
no different than before

This does bring up a few security
issues we need to discuss ...

You might wonder whether WSADMIN can be invoked from JCL batch, and the answer is yes. BPXBATCH works

perfectly well to launch a UNIX shell and invoke the shell script. The chart above shows an example of this.

One twist is the 72 character width limit of JCL. So line continuation symbols must be used. Those are the "plus"

(+) signs at the ends of the lines.

Notice that you may pass in arguments in JCL as well. STDOUT and STDERR may be piped to a file as shown.

Unit 2 - Administrative Model

Unit 2 - 33

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
33

WSADMIN and Security
Within what we've discussed so far are three key security considerations that must be
taken into account for WSADMIN to work:

Resources …

CR SR

DMGR

Master
ConfigurationWSADMIN

Client
WSADMIN log files

1

2

3

Manual
invocation

JCL

Batch
invocation

1. File permission access to WSADMIN log and trace files
Need write access, which requies at least GROUP access.
This is the ID used to log into Telnet or USS, or the ID on batch JOB (or effective ID). WAS Admin ID

2. Ability to establish SSL to DMGR when security enabled
Implies access to the CA certificate used to sign the DMGR's server certificate.
This is the ID used to log into Telnet or USS, or the ID on batch JOB (or effective ID). WAS Admin ID

3. Authentication and authorization to in the DMGR to perform the tasks
Valid RACF ID and proper access to EJBROLEs.
This is the userid/password coded on the wsadmin.sh parameters. Again, WAS Admin ID.

Other IDs can be made to have these
properties ... WAS Admin ID has it by default

There are three key security considerations to take into account when using WSADMIN in connected mode when

global security for the cell is enabled. (If global security not enabled, or if you're using unconnected mode, then

the security considerations drop to the first one list only.)

The main point being made on this chart is that if you wish things to work smoothly one good place to start is to

use the WAS Admin ID and password both as the logged in ID when invoking wsadmin.sh (or supplied on the

JOB card in batch JCL), and on the -user and -password switches. The logged in ID is what provides file

access permissions as well as access to the keyring with the proper certificates. The -user and -password

switches are what provide authentication into the DMGR as well as authority to invoke the functions in the DMGR.

You could make other IDs have these security authorities and keyrings and certificates. The point here is that the

Admin ID will very likely have it as well and it's a good thing to use when first starting out.

Unit 2 - Administrative Model

Unit 2 - 34

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
34

Resources for Learning and Reference
The following resources are available to gaining more experience with WSADMIN:

Logging …

WP101014

WP100963

TD105447

WP101641

txml_script

IBM Techdocs -- ibm.com/support/techdocs

IBM InfoCenter -- publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

WSADMIN client "Help" object and "help" methods

Very good reference source for searches on specific WSADMIN commands or methods

The WSADMIN client has extensive online help in its command syntax. It provides a way to drill
down on syntax and usage for specific objects, method and attributes

Some resources for learning WSADMIN.

Unit 2 - Administrative Model

Unit 2 - 35

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
35

Logging

Unit 2 - Administrative Model

Unit 2 - 36

This is a seemingly complex chart that's telling a somewhat simple message.

WAS z/OS writes output while it is operating. Anyone who's been near WAS z/OS has seen the messages written

to the MVS operating console, and seen the output in the JES spool for the controller and the servant. What might

not have been obvious is the various sources of that output. Those source can be broken down into two broad

categories -- Java-based sources and z/OS native-based sources. The Java-based are represented by the light

blue shaded boxes above and the native sources are the white boxes.

The green highlighting behind the arrows shows the typical routing for output from these various sources. What

you see is that most by default will go to JES spool. There are things one could do to alter this ... setting up a real

LOGSTREAM would be one; directing output to the CTRACE writer is another. But those are actions one has to

take beyond the normal "default" actions most take when setting up WAS z/OS.

It's possible to direct a good portion of the JES spool output to a USS file system. Some do this because they

want to give developers Telnet access rather than 3270 access to the output. But routing to a USS file has its

downsides ... the facilities to automatically close the file and start a new one are lacking, for instance.

The point here is that for the most part, JES spool is where a great deal of WAS output goes. That's the starting

point for the discussion of HPEL.

Unit 2 - Administrative Model

Unit 2 - 37

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
37

Introducing High Performance Extensible Logging
Or "HPEL" for short ... it is a new binary logging mechanism in V8 for all platforms. It
provides a more efficient logging mechanism than clear text logging

High level of log viewer in Admin Console ...

WAS-specific binary format log file
Write to memory buffer, then file

Controls to dictate size limits, what to do when limit
reached, how to trim files, start new files, etc.

Admin Console View Facility
Usable tool to view binary file contents. Has
ability to filter on criteria to limit what is seen

Log Viewer Shell Script Utility
File is logViewer.sh and it has parameters to
limit what is seen in the produced text-readable
output file

Download to PC
HPEL file is converted to readable text and
downloaded as ZIP to your PC where standard
text editors may be employed to view

Viewing the Log:

Optional ... Traditional Mode
still available and is default

Configurable on a server by
server basis

The new High Performance Extensible Logging (HPEL) feature of WAS V8 (all platforms) provides an alternative

place to log the Java-based components. Native component output still goes where it went before, which for z/OS

is JES spool or the operator console.

HPEL is a binary format logging facility, which means it writes less white space and it can be indexed and parsed

more efficiently for filtering and display purposes. In addition, HPEL has built-in log management facilities such as

size monitoring and daily closing of the logs and opening new ones.

HPEL is configurable on a server-by-server basis. It is not required you use it, but if you choose to then you may

do so for only those servers you wish.

The log can be viewed in a few different ways -- first, the Admin Console has a built in filtering and log viewer

facility. We'll take a look at that in a moment. Second, there's a shell script utility that will parse the binary log and

produce human-readable output. And third, there is a facility for downloading a text version of the HPEL log to

yoru workstation where normal text editors can be used to browse, filter or find.

Unit 2 - Administrative Model

Unit 2 - 38

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
38

High-Level of the Admin Console Log Viewer
This is a graphical log viewer supplied as part of the Admin Console:

Content and filtering details …

Log selection and content
filtering section. This
influences what appears
below ...

... record by record display of
HPEL content based on
filtering down above.

The log viewer that's provided with the Admin Console is accessible through the "Troubleshooting" section of the

navigation tree. From there you select the server, then "View HPEL logs and trace."

The resulting log viewer has two main sections -- the top section provides a means of filtering the content shown

by the viewer. You may elect to show everything, or you may elect to narrow the records shown by one a number

of filtering rules found in this top section. We'll see details of this next. At the bottom of the screen will be the

display of the records that match the filtering criteria. We'll see details of this as well.

Unit 2 - Administrative Model

Unit 2 - 39

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
39

Content and Filtering Details
This allows you to determine, with a fair degree of granularity, what HPEL records will
be displayed in the output result set:

Record display …

Expand the
section with
this twisty

Select HPEL log by date, start time of server,
and by CR or specific instance of SR.

Short identifier is the CR, the longer the SRs.
SR STC number appended to end.

(all)

Filter by type
of output

Include or exclude specific
WAS logger functions

Filter by content of message

Wildcards allowed

Filter by range of
time and date

"Apply" will put into effect
your filtering selection

Here is what the content and filtering panel looks like. The first thing to note is you must expand the twisty to see

this section. It's easy to overlook. Once this section is opened it will display a list of all the logs it sees in the log

directory. You may have many logs here depending on (a) how often you stop and restart this server, and (b) how

long it's been since you last cleaned out the logs. Server logs are closed out and new logs opened every 24

hours.

The first task is to select the log you wish to display. You'll see both CR and SR HPEL logs here. SR logs have

the longer name. If you have multiple servant regions defined for a server and you're not sure which is which, note

the Started Task (STC) number at the end. That will provide you a way to correlate the HPEL log to a specific

servant instance.

You may filter by type (System out, System err, Logs and traces) as well as the level of the trace. For instance, if

you just want to see if any SEVERE or FATAL messages are present, then filter on minimum=SEVERE and

maximum=FATAL. You'll see just those records.

To the right you see where you may filter on the loggers. WAS consists of many internal components that log

information. Say you know what logger you wish to filter on ... or suppose IBM Level 2 support requests to see

only those records logged by a specific logger ... then you can include that logger name and see only those logs.

Or you may search on message content using wildcards before or after your filter string.

Finally, you may filter on a window of time within the time represented in the 24 hour log.

Or you may use a combination of all these filtering methods to reduce the total number of records shown to just

those you want to see. Then click "Apply" and your filtering is applied and those matching records are shown in

the bottom half of the screen.

Unit 2 - Administrative Model

Unit 2 - 40

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
40

Record Display of Content Based on Filtering
This displays in your Admin Console for the selected server's HPEL log:

Example …

You may configure which
columns are displayed

Highlight a thread ID and you
may then display records for

that thread only

Refresh and see
new records

You may specify the
number of rows

displayed per page

Export and save to your
PC ... selected rows or

whole repository

Bring up a summary
listing of the server

instance

Go to last page of
the records

The records are diplayed in the lower portion of the log viewer, below the expandable "Content and Filtering

Details" section we just looked at. By default all records in the log will be displayed. You may change many

elements of this page layout, including the number of records displayed, the columns displayed, or to show only

those records for a selected thread ID. The "Refresh" button reads the log and appends whatever new records

may have come in since the last refresh.

It's possible to "export" the repository to a downloadable file and review it on your workstation ... either the whole

repository or what portion is displayed on the log viewer.

Finally there's a button to bring up a nice summary of the server instance information. When reviewing logs and

traces there often arises the need to understand what certain settings are. This button provides a place to retrieve

all that information in a handy format.

Unit 2 - Administrative Model

Unit 2 - 41

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
41

Simple Example of Filtering
Suppose you wish to see all the "Application started" messages:

Configuring HPEL logging …

Select the SR log

Specify message string
with wildcards

Click "Apply"

Only matching
records displayed

Note: case sensitive!

Here's an example of using this facility. Suppose you just want to see all the "Application started" messages.

Here's what you'd do:

● First, select the log from which you wish to display records.

● Next, specify a "Message contents" filter with *Application started* as the string. The preceding
asterisk is needed because the "Application started" records have a message ID to start the record. The

trailing asterisk provides a wildcard for all that may follow. Note that the matching is case sensitive.

● The click on "Apply."

● Down in the record display section you'll see just those records that match your filtering criteria.

In this example a very easy check of all started applications in the server is made possible.

This is just one example. You can imagine many other filtering possbilities.

Unit 2 - Administrative Model

Unit 2 - 42

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
42

Configuring HPEL Logging for a Server
Process is relatively easy with a great deal of configurable options ...

Configuring HPEL tracing …

Specifies location where HPEL log
directories and files will reside

Record buffering enhances
performance but delays slightly
the writing of records to the file

Provides ability to split the logs at
specified daily time

Two options for record purging --
file size trigger or max age trigger

What to do when file system runs
out of space -- stop logging, purge

oldest records or stop server

Server
Restart
Needed

Select
Server

Let's now look at how HPEL is configured. This is done by navigating to the "Troubleshooting" section of the

navigation tree, selecting on "Logs and trace" and then select the server you wish to configure for HPEL.

You'll then be presented with three options for configuration of HPEL -- logging, trace and text log. Recall the

earlier picture that showed the sources of output. Java logs and Java traces were two separate sources. You

may configure them separately here as well. The text log is a human-readable log that's written concurrent with

the binary logs. It's provided as a convenience for development and test. But as it involves additional overhead to

write the less efficient text log concurrently it's not generally recommended for production. For WAS z/OS it's of

limited value anyway ... it only writes the CR's text log, but not the SRs.

On this chart we're showing the configuration of logging sources. You're then offered several configuration options

for this logging.

● Where you want the log to go. The default is shown on the chart but you can point this off to any location you

wish. If you anticipate very large logs you may wish to point this to a location outside the configuration file

system where you have a separate large file system mounted.

● Log buffering is a performance feature ... it allows WAS to write log entries to a memory buffer first, then write

them out to the binary file.

● The log file is closed once a day and a new one opened. You get to specify when that close takes place.

● The final configuration elements relate to space management. These log files will not simply grow forever and

ever. There's a maximum size setting and specifications for what to do when the limit is approached and

reached. You have the option to clean old records using two triggers -- when the file size maximum is

approached or when the age of the record exceeds a trigger (and remember, it's no more than 24 hours since

the file is closed and a new one opened every 24 hours). And you get to set what happens if the log size

maximum is reached ... stop logging, keep logging but make room by purging oldest, or stop the server.

Click "Apply" and then stop and restart the server to pick up the change.

Unit 2 - Administrative Model

Unit 2 - 43

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
43

Configuring HPEL Tracing for a Server
Process is relatively easy with a great deal of configurable options ...

Text logger …

Identical
configuration

options as
logging for

"trace to
directory"

option

Where trace records written to or
dumped to from memory buffer

Select
Server

Alternatively, trace to
a memory buffer

Dump button writes memory
buffer to file trace log where log

viewer may display it

Server
Restart
Needed

HPEL tracing is in many ways similar to logging, but each comes from a different source. The configuration of

tracing is in many ways similar to logging, but with one key difference -- with tracing you have the option of writing

the trace records to a memory buffer rather than to a file.

● Trace to a directory -- with this radio button selected you may then configure write-to-file in pretty much the

same way you just saw for logging. You may specify whether temporary buffering is permitted, when to close

to the file and open a new one, and how and when to purge records if space limits are reached.

● Trace to a memory buffer -- with this radio button selected the trace records are written to a memory buffer.

This is different from the "Enable log record buffering" under "Trace to a directory" ... that is a temporary buffer

before writing to file. The "Trace to a memory buffer" implies trace records written to a memory buffer and

dumped to a file only by human action. The memory buffer is of a size you specify. If that buffer fills up, the

oldest records are purged as new records are written.

● The "Dump" button is under the "Runtime" tab which is visible only when the server is running. What that

button does is write the memory buffer contents at that moment out to the normal HPEL binary trace log file.

Once the trace records are written to the directory file, then the Admin Console log viewer or the logViewer.sh

utility may be used to filter and view the records.

● The memory buffer tracing is a performance feature ... tracing can be a very intensive activity and writing to a

memory buffer is a faster operation than writing to a file. If you make the memory buffer large enough you

should be able to capture the traces for your desired event. Then you dump those records to the directory file

and review.

Unit 2 - Administrative Model

Unit 2 - 44

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
44

Configuring Optional HPEL Text Logging for a Server
Process is relatively easy with a great deal of configurable options ...

Command line logViewer.sh …

Turns on the concurrent
text logging feature

In addition to text logging, include
trace records as well

Text format

Identical configuration
options as logging

Server
Restart
Needed

Of limited
value ... CR only!

Select
Server

The text logger is a feature designed to provide testers and developers a human-readable format of the HPEL log

concurrent with the binary log writing. When this function is enabled HPEL will format the binary records into text

records and write them a file. There any text viewing tool will work.

For WAS z/OS this is of limited value due to the way this text logging feature is implemented. It writes the text log

for the controller region but not the servant regions.

There is overhead associated with this function and since it's of limited value on WAS z/OS the recommendation

is to not enable this. On distributed servers where the server is a single JVM process it works as expected, and

there the value to testers and developers as a readily accessible text log might prove to be of a little more value.

Unit 2 - Administrative Model

Unit 2 - 45

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
45

The logViewer.sh Utility
A command-line utility to extract and view information from the binary HPEL logs. It
has the same capabilities as the Admin Console log viewer:

logViewer.sh -parameters

Server instance HPEL log

● Extract to a text-readable file

● Extract to a separate HPEL log

● Continuously monitor new output

Filtering Options

Let's take a tour of the parameters and options of this
shell script utility. In lab you'll get a chance to use it.

Simple example …

In addition to the Admin Console log viewer facility, WAS V8 provides a command line tool to read the binary

HPEL log and do one of three things: extract to a text-readable file; extract to a separate HPEL log for more

refined HPEL analysis, or monitor the HPEL log and provide text-readable output as updates are seen in the HPEL

log.

This command line tool is provided as a shell script which takes various parameters which control the filtering

options and the output options. Let's take a look at a simple example, then tour the parameter list in more detail.

Unit 2 - Administrative Model

Unit 2 - 46

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
46

The logViewer.sh Utility - Simple Starting Example
Here's a starting example of using logViewer.sh ... first list the server instances, then
use the server instance ID to extract a human-readable output file:

/wasv85config/z9cell/z9nodea/AppServer/profiles/default/bin/logViewer.sh

Reminder of default location of HPEL logs for a given server:

/wasv85config/z9cell/z9nodea/AppServer/profiles/default/logs/z9sr01a

... and the location of the logViewer.sh shell script:

./logViewer.sh

 -repositoryDir /wasv85config/z9cell/z9nodea/AppServer/profiles/default/logs/z9sr01a

 -listInstances

Determines the HPEL server instance logs that are present (all on one line)

Instance ID Start Date

1321728440474 11/19/11 13:47:20.474 EST

1321728440474/0000012000000040-Z9SR01AS_STC00730 11/19/11 13:47:27.081 EST

1321728440474/0000010800000046-Z9SR01AS_STC00731 11/19/11 13:47:40.617 EST

./logViewer.sh

 -repositoryDir /wasv85config/z9cell/z9nodea/AppServer/profiles/default/logs/z9sr01a

 -instance 1321728440474/0000012000000040-Z9SR01AS_STC00730

 -outLog /tmp/hpelout.txt

Extract the HPEL log to a text-readable file ... view or download (all on one line)

This file has the same format on z/OS as on other
platforms. In EBCDIC, so download using "ascii"

Syntax …

The logViewer.sh shell script utility is provided in the same location as all the other shell scripts -- in the

/profiles/default/bin directory. A key piece of information it will need is the location of the directory in

which the HPEL log you wish to view is located. Remember that HPEL logs are a server-by-server thing. By

default they will be in the /profiles/default/logs directory, under the server name configured for HPEL.

With WAS z/OS there are multiple server "instances" for any given application server ... a controller region and at

least one servant region and possible multpile servant regions. The logViewer.sh utility will need to know

which instance you're interested in as well. The -listInstances option will tell you what instances it sees in the

server log directory you specify. The chart shows an example output for a server with one controller and two

servant regions. The date and time the server was started is also shown.

Suppose you wish to view the output in the servant instances highlighted in blue in the chart. Now that you have

the log directory and instance information, you may issue a command such as illustrated above, which will read all

records from the HPEL binary log and write a text-readable log file out to the named directory.

This is just one example ... and a very simple example. Do you recall all the filtering options the Admin Console

log viewer had? Well, logViewer.sh has them as well. We see that level of detail surface as we look at the

syntax of the options for logViewer.sh next.

Unit 2 - Administrative Model

Unit 2 - 47

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
47

Details of logViewer.sh Parameters
Here is the complete list of options and a brief description of each. Notice how the
parameters mirror the Admin Console log viewer options:

logViewer.sh

-repositoryDir <directory name> Location of HPEL repository to read from

-outLog <file_name> Path and file name of the output file

-startDate <date_time> Extract only records after this date and time (help provides syntax options)

-stopDate <date_time> Extract only records before this date and time

-level FINEST | FINER | FINE | DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL Level to extract

-minLevel FINEST | FINER | FINE | DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL Start range to extract

-maxLevel FINEST | FINER | FINE | DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL End range to extract

-format <basic | advanced | CBE-1.0.1> Format of output file

-monitor [interval] Continuously monitor and update output file

-includeLoggers <logger_names> Include loggers by logger class name

-excludeLoggers <logger_names> Exclude loggers by logger class name

-thread <thread_id> Extract only for specified thread

-extractToNewRepository <directory_name> Option to create a sub-repository based on extract rules

-listInstances List the server process instances found in the repository

-instance <instanceid> Extract only named process instance

-latestInstance Extract only the most recent server process instance

-message <message> Extract records that match message mask ... asterisk and question mark wildcards allowed

APAR PM74923 …

This chart lists all the options that apply to logViewer.sh and a very brief description of what they do. This

information was extracted by issuing the ./logViewer.sh -help command.

If you scan the options above you see they map to the same filtering options we saw earlier with the Admin

Console log viewer.

Unit 2 - Administrative Model

Unit 2 - 48

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
48

Newest Method of Managing Output
New function introduced via an APAR to V7, V8 or V8.5:

Overview …

● Introduced by APAR PM74923

● Fully describe in techdoc:

Version

V7

V8

V8.5

Maintenance

7.0.0.29

8.0.0.6

8.5.0.2

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102267

In addition to HPEL, another method of producing non-JES output has been introduced via an APAR. The chart

above shows the maintenance levels for V7, V8 and V8.5 in which the APAR is delivered. In addition, the

Techdoc shown on the chart has a complete description of function as well as a description of how to use an

Apache webserver to provide controlled access to the log files produced.

Unit 2 - Administrative Model

Unit 2 - 49

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
49

The Method Introduced By the APAR
Produces log output to a file system location you specify:

Variables …

● File based.

● WebSphere ensures that there will be no naming conflicts

● Works for all components (Daemon, Dmgr, Nodeagents, Servers (both
controllers, adjuncts, and servants)

● File switching is simple using a z/OS MODIFY command

● No need for users to access the filesystem

● Access to the output can be uncontrolled or controlled...

 At the cell level

 At the node

 Server by server

 Via normal security on the filesystem ... or ...

 Via any security system that the HTTP server supports (SAF, LDAP, etc.)

The main message of this chart is that the output produced by this new function is a set of files per server in the

Unix Systems Services (USS) file system. This new function works for all server types, and you may use this

function for one, several, or all the servers in your cell.

Note: that is, if you'd like some servers to go to JES, with other servers going to this new file-based output, that is

quite possible. It's also possible to designate some servers as JES, some as HPEL and still others as this new

function.

The file names created are based on the server name, STC number and data and time. That means WAS is

responsible for unique names.

Unit 2 - Administrative Model

Unit 2 - 50

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
50

How does it work? What do I do to set it up?
It's really fairly simple ... a few WebSphere variables:

Admin Console …

In WebSphere:

Add variables at appropriate scopes.

 They will be inherited by lower levels...

Simplest setup is to just add them at the cell level and let all components
write to the same path

The same variable at a lower level will take precedence

 Variable names:

DAEMON_redirect_server_output_dir (for the Daemon)

redirect_server_output_dir (for everything else)

Value is simply the path name where you wish the output to be written

Example: /wasv85config/wasoutput/z9cell/z9cell

Two variables control the function. The key is what scope you set the variables to.

Unit 2 - Administrative Model

Unit 2 - 51

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
51

Setup in WebSphere
This is standard WebSphere environment variable setup:

Server restart …

redirect_server_output_dir

/wasv85config/wasoutput/z9cell/z9cell

That's all there is ... in WebSphere

This chart is simply showing the variable being specified in the Admin Console.

Unit 2 - Administrative Model

Unit 2 - 52

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
52

Server Restart and the Result ...
In WebSphere all that is left is to restart the components you believe that you have
modified, and the output will be redirected to the path you've specified.

Rolling log files …

CR SR

Server

:/shared/wasoutput/z9cell/z9cell

-> ls

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174549.SYSOUT.txt

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174549.SYSPRINT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGR.STC12089.CTL.130701.134548.SYSOUT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGR.STC12089.CTL.130701.134548.SYSPRINT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGRS.STC12091.SR.130701.134606.SYSOUT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGRS.STC12091.SR.130701.134606.SYSPRINT.txt

Z9CELL.Z9NODEA.Z9AGNTA.Z9AGNTA.STC12092.CTL.130701.134710.SYSOUT.txt

Z9CELL.Z9NODEA.Z9AGNTA.Z9AGNTA.STC12092.CTL.130701.134710.SYSPRINT.txt

Output for the Daemon

Output for
other servers

in the cell

With a restart of the server to pick up the change you will begin seeing the output piped to the location specified.

Unit 2 - Administrative Model

Unit 2 - 53

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
53

Rolling Log Files
If you wish to switch to a new file, from any z/OS Console:

Result …

F Z9DEMN,ROLL_LOGS

BBOO0211I MODIFY COMMAND ROLL_LOGS COMPLETED SUCCESSFULLY

:/shared/wasoutput/z9cell/z9cell

-> ls

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174549.SYSOUT.txt

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174549.SYSPRINT.txt

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174907.SYSOUT.txt

Z9CELL.Z9DMNODE.WG31.Z9DEMN.STC12090.DAEMON.130701.174907.SYSPRINT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGR.STC12089.CTL.130701.134548.SYSOUT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGR.STC12089.CTL.130701.134548.SYSPRINT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGRS.STC12091.SR.130701.134606.SYSOUT.txt

Z9CELL.Z9DMNODE.Z9DMGR.Z9DMGRS.STC12091.SR.130701.134606.SYSPRINT.txt

Z9CELL.Z9NODEA.Z9AGNTA.Z9AGNTA.STC12092.CTL.130701.134710.SYSOUT.txt

Z9CELL.Z9NODEA.Z9AGNTA.Z9AGNTA.STC12092.CTL.130701.134710.SYSPRINT.txt

Server JOBNAME Modify Action

At this point, if all you want is ISPF browse or telnet access, you are done...

One of the shortcomings of the old method of routing log output to the file system was no good way to stop writing

to one file and begin writing another. That shortcoming has been addressed with this new function by way of a

new MODIFY command that will roll the log files to a files for a specified server.

Unit 2 - Administrative Model

Unit 2 - 54

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
54

The Result
Then browse any file name you choose:

List of files

Browse

The result is a set of text files in the file system that you may then browse.

End of UnitEnd of Unit

