

Advanced Technical Skills (ATS) North America

CPU MF Counters Enablement Webinar

John Burg Kathy Walsh

May 2, 2012

Announcing CPU MF Enablement Education

Two Part Series

- Part 1 General Education <u>Today's Agenda</u>
 - Why is it important to use
 - What features does it have
 - How do you enable the function
 - Q&A
 - How do you get to Part 2?
 - Need to implement CPU MF Counters and send WSC data by June 1, 2012
 - WSC will provide data collection guidelines
 - When valid data is received an invitation to the 2nd webinar will be issued
 - Q&A
- Part 2 Specific Education June 14, 2012 2:00-3:30 PM ET
 - Send us the data and we will send back a CPU MF report of your data
 - Session will cover the use and meaning of the different data in the report
 - Provide overall "profiles" of the data that was sent
 - No customer names will be visible
 - Provide things like: (95% of all data samples in Part 2 were AVERAGE Workload
 - Questions and Answers about the data

New Day Dawning in System z Capacity Planning

Introduction to LSPR

- A set of representative SCP/workload environments
 - SCPs: z/OS, z/VM, and Linux on System z
 - Workload categories: Low \leftarrow Relative Nest Intensity \rightarrow High
 - Current LSPR workload categories: Low, Average, High
 - zPCR extends published categories
 - Low-Avg
 - Avg-High
 - A methodology focused on processor capacity
 - No significant external constraints
 - Equivalent (reasonably high, e.g. >= 90%) processor utilization

A metric to communicate the results

- ITR: Internal Throughput Rate
- Transactions or Jobs per processor busy second

Information stored on the web

- https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument

LSPR Workload Categories

- Various combinations of workload primitives are measured on which the new workload categories are based
 - Applications include CICS, DB2, IMS, OSAM, VSAM, WebSphere, COBOL, utilities
- Low (relative nest intensity)
 - Workload curve representing light use of the memory hierarchy
 - Similar to past high scaling workload primitives
- Average (relative nest intensity)
 - Workload curve expected to represent the majority of customer workloads
 - Similar to the past LolO-mix curve
- High (relative nest intensity)
 - Workload curve representing heavy use of the memory hierarchy
 - Similar to the past DI-mix curve
- zPCR extends published categories
 - Low-Avg
 - 50% Low and 50% Average
 - Avg-High
 - 50% Average and 50% High

zPCR Workload Characterization for z/OS

"Scope of Work" Definition Change

New z/OS Workload Categories Defined

© 2012 IBM Corporation

CPU Measurement Facility

- Introduced in z10 and later processors
- New facility that provides hardware instrumentation data for production systems
- Two Major components
 - Counters
 - Cache and memory hierarchy information
 - SCPs supported include z/OS and z/VM
 - Sampling
 - Instruction time-in-CSECT

New z/OS HIS started task

- Gathered on an LPAR basis
- Writes SMF 113 records

New z/VM Monitor Records

- Gathered on an LPAR basis all guests are aggregated
- Writes new Domain 5 (Processor) Record 13 (CPU MF Counters) records

Minimal overhead

New Hardware Capabilities to Size z/OS Workloads

Importance of using CPU MF Counters

- New CPU MF Counters provide better information to do more successful capacity planning
- Same data used to validate the LSPR workloads can now be obtained from production systems
 - Matches your production workload to the LSPR workloads
 - zPCR automatically processes CPU MF data to provide a match
 - Based on Relative Nest Intensity (RNI)

CPU MF Counters also useful for performance analysis

Challenge to Use SMF to Select a LSPR Workload Mix

SMF 113s Provide Better LSPR Workload Selection

Capacity Planning Data LSPR Workload Category SMF 70s and 113s Relative Nest Intensity (RNI) & L1 Miss % (L1MP) Average Average-High High

© 2012 IBM Corporation

Validation and Enablement Details

Workload Category Validation Process

Analyzed customer data

Initial z10 Study

- 100 z10 customer LPARs
- SMF 70s and SMF 113s
- Built relationship between performance and Nest
- Built new metric to more precisely match workloads
 - Relative Nest Intensity (RNI)
- LSPR workload categories defined as Low, Average, and High RNI

Validated RNI metrics with review of z10 to z196 Migrations

- 75 z10 to z196 customer LPAR migrations
- Validated RNI based workload match

CPU MF z10 Customer Workload Characterization Summary

2) Created new <u>RNI</u> metric

Requirements to Enable CPU MF Counters

Processor requirements

-z10, z196, or z114

z/OS requirements

z/OS 1.10 or higherWith APAR OA30486

z/VM requirements

- -z/VM at 5.4 or higher
 - With APAR VM64961

z/OS Steps to Enable CPU MF Counters

I - Configure the processor to collect CPU MF

____ Update the LPAR Security Tabs, can be done dynamically

2 - Set up HIS and z/OS to collect CPU MF

<u>____</u> Set up HIS Proc

Set up OMVS Directory - required

Collect SMF 113s via SMFPRMxx

3 - Collect CPU MF COUNTERs

___ Start HIS

_____ Modify HIS: "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=(B,E),SI=SYNC"

<u>Recommend to start HIS, Modify for Counters, and continuously run</u>

IRM

SMF 113s Space Requirements

- The SMF 113 record puts minimal pressure on SMF
 - 452 bytes for each logical processor per interval
- Example below is from 3 z196s processors
 - 713, 716 and 718
 - 10 Systems
 - 5 Days, 24 hours

SMF 113s were <u>1.2% of the space</u> compared to SMF 70s & 72s

RECORD	RECORDS	PERCENT	AVG. RECORD	MIN. RECORD	MAX. RECORD	RECORDS	Total Size (with AVG. Record Size)	% Total Size (with AVG. Record Size)
TYPE	READ	OF TOTAL	LENGTH	LENGTH	LENGTH	WRITTEN		
70	14,250	1.8%	14,236	640	32,736	14,250	202,865,850	15.1%
72	744,014	93.5%	1,516	1,104	20,316	744,014	1,128,252,590	83.7%
113	37,098	4.7%	452	452	452	37,098	16,768,296	1.2%
TOTAL	795,362	100.0%	1,695	18	32,736	795,362	1,347,886,736	100.0%

Operations – Display Command

F HIS, B, TT= 'BE Counters', PATH= '/his/', CTRONLY, CTR=(B,E), SI=SYNC

D HIS

RESPONSE=SYSD HIS015I 10.15.54 DISPLAY HIS 286 0025 ACTIVE HTS COMMAND: MODIFY HIS, B, TT='BE Counters', PATH='/his/', CTRONLY, CTR=(B,E), ST=SYNC START TIME: 2012/04/12 10:15:45 END TIME: ____/__ ---:--:--COMPLETION STATUS: -----FILE PREFIX: SYSHIS20120412.101545. COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: 2 COMMAND PARAMETER VALUES USED: TITLE= BE Counters PATH= /his/ COUNTER SET= BASIC, EXTENDED DURATION= NOLIMIT CTRONLY DATALOSS= IGNORE STATECHANGE = SAVE SMFINTVAL= SYNC

Use CPU MF Counters for Performance Analysis

Counters can be used as a secondary source to:

- Supplement current performance data from SMF, RMF, DB2, CICS, etc.
- Help understand why performance may have changed

Some examples of usage include:

- HiperDispatch Impact
- Configuration changes (Additional LPARs)
- 1 MB Page implementation
- Application Changes (e.g. CICS Threadsafe Vs QR)
- Estimating Utilization Effect for capacity planning
- z196 GHz change in Power Saving Mode
- Crypto CPACF usage

Questions ?

IRM

Part 2 Enrollment Information

Part 2 – Specific Education – June 14, 2012 – 2:00-3:30 PM ET

Data Collection Requirement

- Send SMF Data from 1 LPAR (your choice)
 - One LPAR per Enterprise production preferred
 - SMF 70s (CPU) and SMF 113s (CPU MF Counters)
 - 4 hours from 1 day

Process

- Review TECHDOC for Detailed CPU MF Implementation and FTP Directions

 http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4922
- Once you've enabled CPU MF Counters and decided to send SMF data to IBM
 - FTP the SMF data to IBM
 - Email John Burg (jpburg@us.ibm.com) and cc Kathy Walsh (walshk@us.ibm.com) Subject: "CPU MF Data for Part 2" and include
 - > Your name and company name.
 - > The file name that was successfully FTP'd to IBM
 - > Supply email IDs (up to 5) for Reports and Part 2 Webinar invitations
 - We'll' confirm back to you:
 - > Successfully downloaded your SMF data (target within 1 week of your email)
 - > By June 13th, we'll send your CPU MF Report and the Part 2 Webinar call in information
- We need the SMF data successfully received by Friday June 1st

Questions ?

Summary

- CPU MF Counters provide better information for more successful capacity planning
- Same data used to validate the LSPR workloads can now be obtained from production systems
- CPU MF Counters can also be useful for performance analysis

Enable CPU MF Counters Today!

- Continuously collect SMF 113s for your production systems

Thank You for Participating!