
Unit 1a - Overview

Unit 1a - 1

© 2013 IBM Corporation
IBM Advanced Technical Skills

WBSR85
WebSphere Application Server z/OS V8.5

Functions and Capabilities

WebSphere Application Server V8.5 for z/OS

WBSR85
WAS z/OS Functions and Capabilities

Unit 1 - Overview

Unit 1 - 2

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
2

This page intentionally left blank

Unit 1 - Overview

Unit 1 - 3

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
3

Agenda

Concepts …

● Introduction and Overview
● Administrative Model

Using the Admin Console, the WSADMIN interface and HPEL

● Understanding the Server Models
 Multi-JVM model

Configuring, using dynamic MODIFY, and using WLM to classify work into
separate servant regions

 Granular RAS
Extending use of classification XML to control behavior to request level

● Liberty Profile
New lightweight dynamic server runtime model

● Access Data
� JDBC and DB2

Type 2/4, the new alternate JNDI failover function, functions unique to WAS z/OS

 CICS
CTG EXCI and the Gateway Daemon

� JMS and MQ
MQ as JMS provider using bindings and client mode

● Installation Manager (IM)
● WebSphere Optimized Local Adapers (WOLA)

Inbound batch-to-WAS; outbound WAS-to-CICS; HA functions

Hands-On

Hands-On

Hands-On

Hands-On

Hands-On

Hands-On

Hands-On

Hands-On

This is the agenda we'll follow for this workshop. We have the workshop divided into five main categories:

● Overview -- to set a baseline of understanding and to introduce at a high level some of the new things in WAS

z/OS V8.

● Administrative Model -- the objective here is to illustrate how in many ways the administrative model is fairly
common and consistent across platforms. We'll cover WSADMIN a bit because it's an element of the product

that is worth exploring for those who might not be familiar with it. Finally, we'll look at a new WAS V8 function

(all platforms) called "High Performance Extensible Logging" (HPEL), which is a new binary log format that

has benefits associated with filtering and displaying.

● Multi-JVM Model -- the multi-JVM model is perhaps the single most obvious differentiator of WAS z/OS from

WAS on other platforms. It's also one of the least understood. It's much more than simply duplicated JVMs.

We'll explore in more detail the interaction with WLM, and we'll follow that with a discussion of some new V8

function that offers more granular control of WAS z/OS behavior such as tracing and timeouts.

● Accessing Data -- data is the heart of any application design, and a great deal of data is stored on z/OS. In

this section we'll review the ways in which key data systems (DB2, CICS, MQ) are accessed, and we'll

introduce a new function of V8 that provides failover and failback of data connections.

● Installation Manager -- in this section an overview will be given of the new Installation Manager method of

creating the hlq.SBBOHFS data set that contains the WAS V8 product file system.

● WOLA -- We'll finish with a study of the Optimized Local Adapters (WOLA) function. In a sense this could be

considered part of "Accessing Data" but it's sufficiently different that it warrants its own section.

That agenda is supported with a rich set of hands-on labs.

Unit 1 - Overview

Unit 1 - 4

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
4

Essential Concepts
We start by getting a few key concepts on the table ...

Unit 1 - Overview

Unit 1 - 5

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
5

WAS is an "Application Server"
An "application server" provides functions and services to applications so the
applications do not themselves do not have to re-invent those functions:

WebSphere Application Server and open standard APIs …

Application Application

Application Programming Interface (API)Application Programming Interface (API)

Runtime ProcessorRuntime Processor

Personal Midrange Mainframe Tablets
Smartphones

"Cloud"

Application developer focuses on the specific business logic,
and does not worry about writing "plumbing" code

Access to "plumbing code" is through interfaces, which are
typically published and available to all application developers

The "Application Server" provides services to the

application, such as: communication, security,
data access, transaction, etc.

The processor on which the
appserver runs may be any of a

wide range of possible platforms

Within the name "WebSphere Application Server" is the phrase application server, and that refers to a computing

concept that's been around for a very long time.

Many years ago it became clear that having application developers write all the lower-level "plumbing" code each

time was inefficient and created real problems with respect to support and update of that code. A better approach

was to write that plumbing code -- commonly used functions and services -- once and have applications simply call

the functions as they needed them.

To make this easier on the application developer, these functions were provided with programming interfaces that

were well-documented. If the application developed needed to check for the authenticity of a user that was

logging on, they would check the documentation and see how to call the security function.

Originally these application servers ran on the most common type of computer available at that time -- the

mainframe. An example of an early application server is CICS. Over time the concept moved to other computing

platforms as well. Today we see the concept of an application server applying to the full range of what we think of

as "computers," as well as relatively new inventions such as the smartphone, tablets, and even "cloud computing."

A development in this space emerged about 15 or so years ago -- a movement to standardize the interfaces so

developers did not need to try to learn so many different solutions. From this came a wide range of "open

standards" ... standards developed by consortiums of companies and agreed to by all the parties, with the

standards then published for all to use.

That forms the basis for WebSphere Application Server.

Unit 1 - Overview

Unit 1 - 6

This conveys a very important point about WAS on z/OS compared to WAS on other platforms. Some may think

that implies a different programming model, but that's incorrect. The programming model is the same for WAS

z/OS as it is for WAS on Windows as it is for WAS on Linux. The exact same Java EE open standards are

supported across all the platforms supported by WAS.

This is a very deliberate strategy by IBM. WebSphere Application Server is built on a foundation of Java and open

standards. There are many open standards supported by WAS. And the levels for each specification are

supported consistency across all the platforms.

Applications developed on one platform can be moved to another and run. That is by design.

The key to understanding how we can say "WAS is WAS" in the same breath as talking about "platform

exploitation" is this -- the open standards are really specifications for interfaces. Interfaces are implemented with

code under (or "behind") the interface that takes the action the interface specification calls for.

WAS on z/OS has the exact same interfaces exposed to the application as WAS on other platforms. And for a

great deal of the code under the interfaces the implementation is also common. But in certain key areas the

implementation code under the interfaces takes a detour and exploits key z/OS features. The benefit of the z/OS

exploitation accrues up to the application. But the applications do not need to explicitely code to any z/OS

interfaces. WAS is WAS at the interface level; WAS z/OS exploits below that level.

Much of this workshop will focus on what takes place under the specification layer.

See that little symbol in the lower left? That's our first pointer to an InfoCenter search tag for the article that spells

out all the supported specifications in WAS V8 as well as WAS at earlier releases.

Unit 1 - Overview

Unit 1 - 7

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
7

IBM Java inside WAS z/OS

Performance …

It's important to understand that while the Java APIs are industry standards, the
implementation below the APIs becomes increasingly platform-aware:

Programming
APIs

High-Level
JVM Functions

Low-Level
JVM Functions

SDK conforms to the accepted standards
● IBM SDK provides all the required APIs according to the

specification at the level being discussed
● IBM z/OS SDK provides additional APIs to take advantage

of z/OS platform specific functions (such as SAF security)

JVM Functions common across IBM SDKs
● The JVM is entirely IBM's ... first delivered in 2005
● Many features: generational GC, shared classes
● High-level JVM functions common across IBM Java

System z and z/OS functions
● Takes specific advantage of platform, including exploitation

of new CISC instructions available with new System z: z10,
z196, EC12

● Big Decimal, Large Page, Out of Order execution,
transactional execution, flash paging ... equals performance

● Work with z/OS dispatcher to offload to specialty engines

Inside of WAS z/OS is an included copy of IBM Java for z/OS. Three broad points are made on this chart:

1. IBM Java, regardless of platform, is Java ... it complies fully with the Java specification.

2. The implementation of the Java Virtual Machine (JVM) under the application specification level is fully IBM's

design and development, based on IBM's many years of experience in operating system and virtual OS
environments.

3. IBM Java on z/OS is platform aware and takes advantage of specific platform features to provide either
additional function or improved performance.

The first point is important because it establishes IBM Java as being specification compliant ... applications are
written to the particular Java specification level, not to some IBM version of Java. Java is Java at the API spec

level.

The second point is important because it establishes the JVM implementation as being something IBM has
designed, developed and continues to improve. Provided the application specification interfaces are compliant

(which they are), the underlying implementation may be done however a vendor chooses. IBM's JVM is based on

IBM's design.

The third point is important because helps to address the question of "Why run Java on z/OS?" The answer is

because (a) it performs very well, due in part to the specific exploitation of System z and z/OS features Java on

z/OS does, and (b) it offloads to specialty engines.

Unit 1 - Overview

Unit 1 - 8

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
8

Performance Over Time

Installation/configuration …

It's a story of improvements in hardware and software:

Controlled test in specific environment. Results vary. This is not a guarantee of performance.

This chart is showing the performance improvements seen in WAS over time with changes in two variables: (1)

the version of WAS z/OS and (2) the hardware platform on which the test was run. The trend is obviously upward.

 The end-to-end improvement is a factor of over five times better performance.

Notes:
● As with any performance chart, this test was performed under controlled conditions with a specific sample

workload with a specific system setup configuration. Performance results are a function of many factors, and

your results may vary. The results shown on this chart are not a promise of performance gains and should

not be taken as such.

● This chart should not be used for capacity planning. Other capacity planning tools for System z are better

suited for that role. This was a test of WAS z/OS throughput performance under the specified test conditions.

● The test conducted measured achievable throughput when the CPU utilization was pushed to near 100%.

The "Aggregate Performance" is a normalized measure of achievable throughput with the left-most bar in the

chart serving as the baseline value of 1.0.

Notice how the bars in the chart represent changes in either software or hardware, but not both at the same time.

What the chart is showing is how overall performance is a function of both software enhancements as well as

hardware enhancements. Combined across the width of this chart and the throughput improvement was 5.2 times

better than the baseline test.

The hardware improvements are well documented on the IBM website for System z hardware -- faster clock

speeds, better cache design, and other processor and system design factors. The software improvements came

in three forms: (1) improved codepath efficiency within certain parts of the WAS product (particularly the JPA

code exercised by the DayTrader sample application; (2) improvements in the efficiency of the JVM, particularly in

the area of the Just-in-Time (JIT) compiler; and (3) improvements in the JVM to take specific advantage of new

processor instructions introduced in the z10, z196 and EC12 processors.

Unit 1 - Overview

Unit 1 - 9

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
9

Installation / Configuration
Setting a high-level baseline of how this is accomplished

Unit 1 - Overview

Unit 1 - 10

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
10

Overview of Installation
Unit 5 of this workshop covers the details of this. Here we'll provide a very high-level
recap of what's involved to install WAS z/OS:

Creating runtime …

IBM Installation
Manager z/OS

Product

"Repository"

Install

Instance

/Service/zWebSphere/V8R5FP02

Install command syntax that
indicates what to install and
where to install it

This can be a local
repository or the IBM

repository hosted "in
the cloud"

On z/OS this can be
wrappered in JCL and

run as a job that
performs the install

Typical practice is to
have a separate install

image for every version,
release and fixpack you

want to use

This is a departure from SMP/E. Unit 5 will discuss why IM was chosen for this
and what advantages this brings when installing WAS z/OS

Starting with WAS z/OS Version 8 the installation of the product code is handled by IBM Installation Manager, or

"IM" for short. This is a departure from the past, where z/OS SMP/E was used to install the product files.

The result is the same -- a file system that contains the product files and binaries -- but the process by which that

file system is built is different. In the past SMP/E built the file system; now IM builds the file system. That file

system, which we call the "Install Instance" here, is typically created at a /Service mount point, and typically the

mount point name will carry some indicator of version and fixpack level of the code contained in the file system.

For IM to build this "Install Instance" file system it needs a source from which it will get the product files. IM can't

create the WAS z/OS files out of thin air ... it must get those files from somewhere. For IM that "somewhere" is a

repository, which is a bundle of files produced by IBM. That repository may either be local (hosted on a server

within your organization), or "in the cloud" (hosted on an IBM server somewhere and accessed over the Internet).

More and more the preferred method is to get the files and updates "from the cloud."

IM itself is really just a program that takes commands from you and builds the install instance from the repository

you specify. Of course there's more detail to it than that, and in Unit 5 of this workshop we'll go into that detail.

The key point here is that running IM is really pretty simple once you've done the initial work to set it up and once

you've established the input command syntax. Those are the details covered in Unit 5.

Unit 1 - Overview

Unit 1 - 11

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
11

Overview of Creating the Runtime
This process has been the same for several versions now. It involves creating a set of
customized z/OS jobs, then running those jobs to create the runtime enviornment:

Configuration file systems …

Install
Instance

WebSphere Customization
Toolkit (WCT)

PRS4944 on ibm.com/support/techdocs
Configuration Planning Spreadsheet

Job to allocate and mount the configuration file system

Job to create the RACF security profiles

Job to create the directory and XML skeleton in file system

Job to perform final create of all the configuration XML files

Job to copy JCL start procedures into your named PROCLIB

The jobs perform relatively
mundane tasks

Key is making sure all the
created artifacts have
consistency of names and
values

That's what the spreadsheet
does ... it imposes
consistency based on a few
key top-level input values

Once IM has been used to install the product files to an "install instance," you may then proceed to building the

runtime. This is done in a manner fairly consistent with how it's been done since Version 6.1:

● The WebSphere Customization Toolkit (WCT) is a graphical workstation tool that takes input on names and

values and generates a set of customized JCL batch jobs that build the runtime. The WCT has an upload

facility that transfers the generated files to the target z/OS system you specify.

● The input for names and values could be entered manually, but a simpler method is to use the planning

spreadsheet. The spreadsheet takes a few high-level values from you and then generates all the lower-level

variables needed by the WCT. The spreadsheet makes things much easier, and it provides valuable

consistency between all the various names. Using the spreadsheet is a recommended best practice.

● The jobs that get uploaded do fairly mundane things like allocate file systems, copy files and generate XML.

At the end of running those jobs what you'll have is a mounted file system populated with customized

directories and XML, a set of SAF profiles under it all, and JCL start procs used to start the servers.

If you've gone through this process in the past for V6.1, V7 or V8, then the process in V8.5 will look very, very

similar. A new copy of the WCT is needed for V8.5 as well as a new edition of the spreadsheet. Otherwise, the

process is identical.

Unit 1 - Overview

Unit 1 - 12

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
12

Overview of the Configuration File Systems
The configuration file systems contain directories and XML files that represent the
runtime. Your customization ends up as changes to these directories and files:

Starting and stopping servers …

/wasv85config/z9cell/z9nodea

 Z9CELL.Z9NODEA.Z9SR01A

 /AppServer

 /profiles

 /default

 /config

 /cells

 /z9cell

 /nodes

 /z9nodea

 /servers

 /z9sr01a

 was.env

 server.xml

Various XML files all

up and down this
directory tree

Key Points:
● This is built by customization

jobs

● Updates in Admin Console result
in updates to various XML files

● All this is contained in a UNIX file
system

● Backup and restore is done at

this level

Sym
link

This symlink comes into play on the
MVS START command ... next chart

At the heart of a runtime environment is a UNIX file system populated with directories and XML that represent all

the customization you provided at time of construction and and any updates you did after the runtime was built.

Understanding all the details of this file system is not important. At first it's enough to know that the file system

consists of a bunch of directories and files, and that the administrative console application understands everything

and knows where to put things.

As the chart indicates, the key points are:

● The file system is built when you run the customized jobs mentioned on the previous chart. One of those jobs

allocates and mounts the file system, and other jobs populate and customize the file system.

● Every time you go into the Admin Console and make changes, those changes turn into updates to the

configuration file system. Some updates are simply changes to XML files, and other updates involve creation

of new directories and adding XML files. The Admin Console understands all this so you don't have to.

● Since these file systems are contained entirely within the UNIX file system support of z/OS UNIX Systems

Services, that means it is contained within a z/OS ZFS file system. That means it can be backed up and

restored using standard z/OS utilities.

The other thing shown on this chart is a UNIX symbolic link that's created right up under the mount point for the

configuration file system. That symlink consists of the cell, node and server short names. Short names are a way

WAS z/OS overcomes length limitations in z/OS. Once such length limitation is on the PARMS= value in a JCL

start procedure. To start a server it's necessary to point to the was.env file for that server, and that file is located

way down the directory path. The length of that path is quite likely too long for PARMS=. Therefore, symlinks are

created right under the mount point to provide a short-cut to the was.env file for each server. The chart shows

only one symlink for one server (server "z9sr01a"), but if you had other servers you'd see a three-part uppercase

symlink for each.

Unit 1 - Overview

Unit 1 - 13

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
13

Starting and Stopping Servers
WAS z/OS servers operate as started tasks. Standard MVS START commands are used:

Administration overview …

S Z9ACRA,JOBNAME=Z9SR01A,ENV=Z9CELL.Z9NODEA.Z9SR01A

JCL Start

Procedure

ENV= is a pointer to the symlink that

resolves to the server directory. This
provides a way to overcome length

limitations in z/OS for the PARMS='' string

One JCL proc may be used to start
different servers in the node ... simply by

passing a different ENV= string

Key Points:
● In z/OS environment this is largely "business as usual" processing

● The server comes up as a started task (multiple address spaces as you'll see)

● It is possible to use supplied startServer.sh and stopServer.sh shell scripts

(those end up issuing MVS START and STOP under the covers)

● Also use Admin Console to start and stop certain servers

WAS z/OS application servers are started tasks. They manifest as multiple address spaces (as we'll see in a

moment). The key point here is that on z/OS the servers are started as started tasks. That means they can be

managed by standard z/OS operational tools such as automation routines.

The syntax of the START command is shown on the chart. The JCL procs needed for WAS z/OS are copied into

the proclib you name when you do the spreadsheet / WCT processing. The JCL procs are customized by the

WCT and copied into your proclib. Another job creates the SAF STARTED profile to allow the START command to

be issued.

The JOBNAME value may be anything you wish, but the recommendation is it be equal to the server short name of

the server being started. That allows the server names and job names to line up nicely.

The ENV= string is what points to the specific server you wish to start. The JCL start procs are somewhat generic

in that they allow any server in the WAS z/OS "node" ("node" is something we've not yet discussed ... in short, a

node is a logical collection of servers configured for a given z/OS LPAR). The ENV= string is what points to the

symlink we discussed on the previous chart. As you recall, the symlink is a shortcut down to the was.env file for

a specific server. Therefore, by specifying ENV= on the START command, you tell z/OS which symlink to use and

with that which was.env to pick up. That starts the specific server you request.

It's also possible to start servers from the WAS Admin Console. In that case what happens is WAS z/OS formats

up the MVS START command and issues that on your behalf. Some servers can't be started this way. For

example, the Deployment Manager server, which runs the administrative console application, can't be started from

the Admin Console because if the Deployment Manager isn't started then there's no Admin Console.

Those familiar with WAS on the distributed platform will know about UNIX shell scripts that start and stop servers.

Those work on WAS z/OS as well. They end up doing what the Admin Console does -- that is, formatting up the

MVS START command and issuing that on your behalf.

Unit 1 - Overview

Unit 1 - 14

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
14

Administration Overview
High level of the Admin Console and administration of runtime

Unit 1 - Overview

Unit 1 - 15

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
15

The Deployment Manager and Admin Console
The Deployment Manager is an application server with a dedicated purpose: to run the
Administrative Console application:

Nodes, Node Agents …

Deployment Manager

Application Server

Admin Application

Master Configuration
File System

The Administrative Console's role is to turn your mouse clicks and keystrokes
into the appropriate updates in the configuration file system XML tree

The Administrative Console is a graphical interface to the management application that runs in a special purpose

application server called the "Deployment Manager." The Admin Console is what allows you to issue simple

mouse click actions in the user interface and have that turned into the appropriate XML updates under the covers.

Note: you could make those those updates to the XML files manually, but that is strongly discouraged. For one

thing, manually updating XML means your environment may no longer be supported by IBM. In addition, some

updates require changes to XML in multiple places. Unless you know exactly what changes are needed where,

there's a good chance you won't do something properly. The Admin Console, on the other hand, knows what to

update and where.

The configuration file system managed by the Deployment Manager is known as the "Master Configuration File

System." That file system has information for all the nodes and servers in the cell. We'll spell out what nodes and

cells are in a moment ... the key point here is that a Deployment Manager has management control over those

things, and the UNIX file system managed by the Admin Console (which runs in the Deployment Manager) is

aware of everything in its environment. Changes are first made to this "master" file system, then copied out to the

file systems for each node.

Unit 1 - Overview

Unit 1 - 16

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
16

Nodes, Node Agents and Synchronization
Nodes are way of collecting up application servers on an LPAR. Node Agents are a way
to get configuration changes from the master configuration out to the nodes:

The cell …

Application
Server

Application
Server

Node
Agent

Node Configuration
File System

Node

Application
Server

Application
Server

Node
Agent

Node Configuration
File System

Node
Nodes are a
collection of servers
on an LPAR

Admin Console
updates the Master
Configuration File
System

Node Agents copy
changed XML files
from Master down to

the node file system

On the previous chart we indicated how the Admin Console makes updates to the "master configuration," and we

hinted at those changes being copied out to other file systems. It's now time to explain all that.

WebSphere Application Server (WAS) is designed around the principle of a distributed architecture. By that we

mean the design assumes the WAS configuration will span multiple operating system instances. That's true on

non-z/OS platforms, and it's true on z/OS as well. On z/OS the other operating system instances are typically

other Logical Partitions (LPARs) on the same mainframe server hardware. Still, each LPAR is a physically

separate instance of the z/OS operating system.

Nodes are simply a WAS concept of logically collecting up application servers that exist on a given LPAR. The

picture above shows a hypothetical two-LPAR configuration with a set of servers on one (which is one "node") and

a set of servers on the other (which is another "node"). The Deployment Manager is a separate node unto itself

and it may run on the same LPAR as an application server node, or a completely separate LPAR.

Changes made through the Admin Console are made to the Master Configuration file system, which is different

from the configuration file system for each node. So how do the changes made to the master propagate out to the

node configuration file systems? By a process known as synchronization, which is a fancy word for "updated files

are copied out and written to each node's configuration file system."

Rather than assume the Admin Console has write access to file systems on other operating system instances, the

WAS architecture includes an agent process in each node to act as the intermediary between the Admin Console

and the configuration file systems for each node. This process is called the "Node Agent" (creative, huh? ☺) and

when an updates are made to the master configuration those changes are copied out to the nodes via the Node

Agent.

Note: the act of synchronization can be controlled. By default it occurs at time of change or every 10 minutes, but

can be made to occur less frequently, or made to occur only when you manually invoke it. So in a production

environment changes can be staged and carefully propagated by your deliberate action to start synchronization.

Unit 1 - Overview

Unit 1 - 17

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
17

The "Cell" -- Boundary of Management Control
The "cell" is the extent of management control for a given Deployment Manager. Most
run with multiple cells. And a cell can span platforms if you wish:

WSADMIN …

Cell
A "Cell" is the extent of
management control for a given

Deployment Manager

Often used to isolate security
for Test, QA, Production

May span platforms ... issue
there is simply coordination of
SSL certificates

Now we're ready to define what a "cell" is, even though we've mentioned that term several times before. The "cell"

is the extent of management control for any given instance of the Admin Console administrative application, which

runs in a Deployment Manager. For any given Deployment Manager the master configuration for that Deployment

Manager understands what nodes and servers it managed by the XML it sees in the configuration.

You may have multiple cell environments, and most likely will have multiple cells. Cells are used to separate

different environments such as test, QA and production. You may specify different security controls at the cell

level, which allows certain people to access the test cell but not the production cell.

The final point on this chart is that a cell may span multiple platforms. It is not limited to "just z/OS". When a cell

spans z/OS and other platforms the consideration becomes managing the coordination of security certificates so

every platform in the cell can talk to each other. When the cell is entirely on z/OS in a Sysplex, the certificates are

stored in SAF and available to every node in the cell. That makes certificate coordination very easy. When the

cell jumps off z/OS then the certificates need to be exported and imported so SSL can take place between the

various platforms.

Note: a WAS "cluster" can not span z/OS and non-z/OS. The reason is because IIOP routing within a cluster is

managed by z/OS WLM, and if the cluster spans z/OS and non-z/OS then WLM can't "see" the whole cluster. So

a cell that spans z/OS and non-z/OS is possible, it's just that any cluster you create can't span z/OS and non-z/OS.

You may create clusters on z/OS and other clusters on non-z/OS ... that's okay.

Unit 1 - Overview

Unit 1 - 18

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
18

WSADMIN -- A Programmatic Interface
WSADMIN is a scripting interface to WAS (all platforms). It provides a way to
programmatically perform administration actions:

Liberty …

Deployment Manager
Application Server

Admin Application

Master Configuration
File System

Jython or JACL script

wsadmin.sh
client shell

script

JCL and BPXBATCH

Invoke
manually

Unit 2 of this workshop will go into more detail

Anything you can do in Admin Console, you
can do using WSADMIN scripting

Allows you to automate common tasks such as
application deployment ... which provides
consistency of actions across Test, QA, Prod

Up to this point we've referred to the Admin Console web application as the means by which configuration

changes are made. But there's another method available to you -- the WSADMIN scripting interface. This allows

you to use scripts to programmatically perform configuration actions. In Unit 2 of this workshop we'll discuss

WSADMIN in a bit more detail.

The main point here is that a programmatic management interface provides you the ability to enforce consistency

of configuration actions ... either for repeated operations on the same cell, or for actions across cells such as you

might do between test, QA and production.

There are several different ways you may invoke the WSADMIN function. One way is manually from a UNIX shell

environment. Another is to wrapper the UNIX command in JCL using BPXBATCH. By using JCL you then open

up the possibility of including WSADMIN actions in standard z/OS operational control tools.

Again, more on WSADMIN in Unit 2.

Unit 1 - Overview

Unit 1 - 19

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
19

Liberty Profile
The Liberty Profile is a lightweight, dynamic, composable, single-JVM server model. It
is offered along with "Traditional WAS z/OS" ...

Applications …

Single 64-bit Java SDK

Only that function
called by configuration

ApplicationApplication ApplicationApplication

server.xml

● Configuration file determines what
functions are loaded

● Starts very quickly, consumes much less
memory than traditional WAS z/OS

● Servlets, JSPs, web applications
Updated in V8.5.5 with additional features

● Dynamic -- change server configuration or
applications without server restart

● Not part of traditional WAS "cell" or "node"

structure

We have a section and lab on this topic

One of the significant new functions that comes with V8.5 is the "Liberty Profile" ... which is a new server model

that provides a single-JVM server. This server is composable, which means you configure only those features

your application needs. This helps reduce the overall resource usage. The design is also very dynamic, with

changes to the configuration and applications detected and updated automatically.

Right now the Liberty Profile design is limited to web applications -- servlets and JSPs. Those applications do not

need the full function of traditional WAS, so deploying Liberty Profile servers is a way to reduce resource usage.

Note: with Liberty 8.5.5 additional features have been added, including EJB-lite, JMX, caching and a list of other

things. In the unit on "Server Models" we'll review those new featurs.

The Liberty Profile is shipped with WAS V8.5 but any given server instance is not part of a traditional WAS cell or

node structure. Each Liberty Profile server instance is managed by way of its configuration file (server.xml) ...

though it is possible to share configuration elements between many servers to make managing multiple servers

easier.

This workshop has an entire section on the Liberty Profile where more details will be provided.

Unit 1 - Overview

Unit 1 - 20

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
20

Applications
Overview of application development, packaging and deployment

Unit 1 - Overview

Unit 1 - 21

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
21

Different Kinds of Applications
Here's a partial review of some common application "types" ...

Packaging …

Servlet / JSPBrowser

● Used to render user browser screens
● May interact with backend data
● May include JavaServer Faces or Struts

(open source frameworks)

Web Service
SOAP or RESTful

● Computer-to-Computer interaction
● Mobile devices
● Request type is HTTP

● Often used as backend to Servlet/JSP
● Often used as business logic and

interaction with backend data
● Often packaged with Servlet/JSP

EJB
Servlet or

Java Client RMI/IIOP

MDB
MessageMessage

MessageMessage

● MDB = Message Drive Bean
● Listens for message arrival on queue
● Picks message up and triggers action of

application (often calls other EJBs)

Here we'll take a brief review of different kinds of applications you may encounter when using WAS z/OS (or WAS

on any platform for that matter). This list of applications is not exhaustive ... you may well encounter other types.

And you will almost certainly encounter applications that have a mixture of these elements included in the

application being deployed. The purpose of this chart is really just to get concepts and terminology on the table.

● A very common application type is a servlet/JSP model. This is used when browsers are the interface for

users accessing the application. JSP stands for "Java Server Page" and that provides a means of formatting

dynamic web pages that contain some static content (logos, other graphics) as well as dynamic content

(information specific to the user). Servlets are Java code that often provide the navigation logic between

elements of the application and often do backend data access as well.

● Web services are becoming increasing common as well. Web services are intended for device-to-device

communications, including the more recent mobile device access. The remote device communicates with

either SOAP (Simple Object Access Protocol ... a standard for XML exchanges) or RESTful, which is based

on commands included as part of the URL sent from the device. From a WAS perspective, web service

requests are seen as HTTP requests, which is the same as used for browser access.

● Another application type is EJB, which stands for "Enterprise Java Bean." These are typically used for deeper

business logic, and end-users access these EJBs usually through another component such as a servlet.

Servlets and EJBs are very commonly packaged together and deployed a logical group into WAS.

● The final type mentioned on this chart is MDB, which stands for "Message Driven Bean." This is a way to

have an application listen for the arrival of a message on a message queue (MQ or other messaging queueing

function), and when the message arrives then pick it up and act on it.

Unit 1 - Overview

Unit 1 - 22

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
22

Application Packaging and Deployment
The unit of deployment is an "EAR" file -- a zip format file -- that the DMGR takes in,
determines requirements, then updates XML so appservers understand updates:

Deployment …

Application
Tooling

(such as IBM RAD)

Enterprise ARchive File (EAR)

Web ARchive File (WAR)
Holds web applications, such as servlets and JSPs

Java ARchive File (JAR)
Holds EJB applications

Deployment Descriptors
XML files that tell the story of the components packaged
up in the JARs, WARs and the overall EAR

ZIP

ZIP

ZIP

WAS applications are comprised of not just one file, but dozens to hundreds of Java files. If you had to install

each of those files individually it would be very time consuming and very prone to error.

Thankfully the Java EE standard defines a packaging format that makes things a little simpler. The basic unit for

application installation is something called an "Enterprise Archive" file, or EAR for short. That is really just a ZIP-

format file with a standard internal layout of folders and files. WAS knows how to crack open an EAR file and

interrogate its contents as part of installation. EAR files are typically constructed by the application development

tools used by the developers ... IBM Rational Application Developer (RAD) for example.

Think of an EAR file as a kind of "outer envelope" for application component packaging inside. There are two

primary types of application components -- web components (servlets, JSPs) and enterrpise Java bean (EJB)

components. Web components are packaged into a sub-ZIP called a "Web Archive" file, or WAR for short. EJB

components are packaged into a "Java Archive," or JAR zip file.

In addition to the zip files there are XML files called "deployment descriptors" that "tell the story" of the application

being installed. This is what WAS is looking for when you install an EAR ... it cracks open the EAR and finds the

deployment descriptors, and from those it can tell what kind of application you're installing and what kinds of

questions it's to ask of you to complete the installation.

EAR, WAR and JAR files have been around for a long time. They're not new to WAS z/OS V8. And they are

platform-neutral ... an EAR file may be deployed to WAS z/OS or WAS Linux or WAS Windows.

Unit 1 - Overview

Unit 1 - 23

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
23

Applications Deployment in WAS z/OS
Application deployment is the same on WAS z/OS as it is on other WAS platforms. Can
be done through Admin Console or WSADMIN. Some things to consider:

Taking advantage of platform …

What backend data is the application seeking

to use?

What other dependencies does the application

have (other programs, other Java classes)?

Does the application have security
requirements that need to be accounted for?

In general it is best if application developers and WAS administrators
communicate with each other so deployment is as successful as possible

Applications are deployed through the Admin Console (or WSADMIN scripting). The process involves pointing to

the EAR file to be deployed and then working through a series of steps where the Admin Console application as

you (the human deployer) to resolve any required information needed to properly install the application.

How many steps of information input are required to deploy an application? It depends on the application, and it

depends on what information is already encoded in the "deployment descriptors" packaged with the application.

The key point here is that an application may require things to exist in the WAS runtime environment for the

application to be deployed correctly. These include data connections (which we'll cover in Unit 4 of this workshop),

dependencies on other Java class files to be available, or security requirements such as EJBROLE settings.

Application deployments should be done with proper communication between the developers and the deployers. It

is not realistic to assume deployers can read the minds of the developers and know what is expected for any given

application. A best practice is to developer procedures for documenting application requirements and passing

those requirements along from developer to deployer.

Unit 1 - Overview

Unit 1 - 24

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
24

Taking Advantage of z/OS
A review of the way WAS z/OS takes advantage of the platform

Unit 1 - Overview

Unit 1 - 25

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
25

System z Specialty Engines
Specialty engines provide additional processing capacity with an attractive financial
profile: lower acquisition cost, not counted towards software license charges:

Multi-JVM Design …

Java Work1 DDF and DB2
Utilities2 Other Work

z/OS

Dispatcher

zAAP Processors zIIP Processors General Processors

zAAP - System z Application Assist Processor
Offload of Java and XML parsing work.

zIIP - System z Integrated Information Processor
Certain DB2 work and XML parsing services.

zAAP-on-zIIP
A means of more efficiently using specialty engines by defining only a pool of zIIP processors and allowing
eligible zAAP work to run on the zIIPs3.

zAAP-on-zIIP

Note: simplified representation of

offload mechanism. Various tuning
and control parameters exist.

IFL - Integrated Facility for Linux
For running z/VM and Linux. Does not apply to z/OS, but plays strong role in Linux for System z

Note 2 -- Plus other work, see http://www.ibm.com/systems/z/hardware/features/ziip/

Note 1 -- See http://www.ibm.com/systems/z/hardware/features/zaap/

Note 3 -- EC12 planned to be the last system that supports zAAP; after that, zAAP-on-zIIP will be the offload mechanism

We start this discussion with a high-level explanation of System z "specialty engines" for those who may not have

a background in the topic. The ability to offload Java work to specialty engines is one of the key motivators to

using Java on System z.

Specialty engines provide a means of dispatching work running on z/OS to engines other than the general

processor engines. That provides two key benefits:

● It allows work that must run on general processors (such as CICS, or COBOL batch) to have capacity on

those engines by not using GP cycles for Java, and

● It allows Java work to run on engines that do not count towards software licensing charges.

The net effect is that adding Java work to a z/OS system does not necessarily imply having to acquire addition GP

engines, which then implies potential increases in software licensing charges. It is possible that Java work can

have a cost-neutral effect (aside from the acquisition cost of the specialty engines, which are priced substantially

below GP engines).

Note: the dispatching of Java work to available specialty engines is transparent to the Java applications. The

decision where to dispatch is done at a level lower on the system ... down at the interface between the JVM and

the z/OS dispatching code.

There are several flavors of specialty engines and those are discussed on the chart above. With respect to Java

the key is zAAP, or zAAP-on-zIIP. (The EC12 machine is the last to support zAAP alone; going forward it will be

zAAP-on-zIIP, which is a means of consolidating non-GP work on a pool of specialty engines rather than having to

separately allocate zAAP and zIIP engines. In short, zAAP-on-zIIP is a good thing.)

In summary, the existence of specialty engines on z/OS is a key enabler for Java work. It is a factor often cited by

customers as a factor that plays a role in their decision to host Java work on the mainframe.

Unit 1 - Overview

Unit 1 - 26

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
26

WAS z/OS and the "Multi-JVM" Design
We have a whole section on exploiting this feature. For now, focus on the essentials:

Clusters …

Platform Native
Code

IBM Java Code

Your
Application

Your
Application

Servant Region

Request

Request

Request

zWLM Work
Request Queue

Platform
Native Code

Java Code

Controller Region

Listener
Ports

Platform Native
Code

IBM Java Code

Your

Application

Your
Application

Servant Region

Request

Request

Request

zWLM Work
Request Queue

Servant region hosts

applications

zWLM work queue
acts as intermediary
point for requests

Servants "pull" work

Controller hosts all
the IBM "plumbing"
code as well as the

listener ports

Additional servants
may be started ... by
your or by zWLM

Provides vertical
scaling ...

... also classification

and work placement

WP101740TechDocs

One of the most striking differences between WAS on z/OS vs. WAS on other platforms is the "multi-JVM" model

of the application server. On other platforms the "application server" is a single JVM while on z/OS the application

server is at least two JVMs and potentially more.

You may be familiar with this already. If so then later on we have a whole unit on this model that will explain in

more detail what takes place between the controller region and the servant region, and explore why certain things

behave the way they do. If you're not familiar with this model, then a brief introduction is in order:

● The "Controller Region" (or "CR" for short) runs a JVM that is used for IBM plumbing code. Your applications

do not run here. This is used to host the listener ports, to take in the requests and classify them, and to queue

the work to the servant region where it runs.

● The "Servant Region" (or "SR" for short) runs a JVM where your applications execute. For any given

application server instance you will have one CR and between 1 and n servant regions. If you have multiple

servant regions then your application binaries execute in each of the servants. Right there you can see that

the multi-JVM model provides a kind of "vertical cluster" behind the CR to provide a degree of availability.

● The number of servant regions that execute is configurable by you. You may elect to have only one SR for a

server, or you may elect to have four started when the server starts, or you may elect to allow z/OS WLM to

dynamically start additional servants if it sees a single servant is not meeting goals. Again, the unit coming up

will go into details on how all that is configured and managed.

● In between the CR and the SRs sit z/OS WLM work queues where work requests are very temporarily

"parked" before being dispatched to the servant regions for execution. This provides a kind of short term

"shock absorber" between the CR and SR. It also explains why with WAS z/OS it is not necessary to

configure hundreds or thousands of threads to handle temporary spikes in requests. On WAS z/OS those

requests temporarily in excess of ability to process are "parked" on the WLM work queues rather than

"parked" on threads. Final point -- the SR by definition can't be overrun with work ... it will take only what it can
process. If the available servants fall behind then the WLM work queues expland. This is a pull model, not a

push ... the SR can't be overrun because it pulls ... the CR does not push.

Unit 1 - Overview

Unit 1 - 27

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
27

CRCR

SRSR

SRSR

Application Server

CRCR

SRSR

SRSR

Application Server

LPAR A LPAR B LPAR n

Load Balancer
Sysplex Distributor, Plugin,

Other Vendor Options

"Outer" Cluster
● Multiple appservers across LPARs
● WebSphere cluster common across platforms
● App binaries in each appserver's SRs
● Stateful replication possible
● Many options for front-end work distribution

Clusters - "Inner" and "Outer"
With WAS z/OS we have two levels of clustering for availability:

Other examples …

CRCR

Application Server

SRSR

SRSR

"Inner" Cluster
● Multiple SRs behind a CR
● Each SR physically separate JVM
● App binaries in each JVM
● Each SR has own worker thread pool
● WLM will restart failed SR
● WLM will distribute work (Unit 3)
● Stateful replication possible

With WebSphere Application Server for z/OS we have the opportunity to form up two levels of clustering for

application availability.

The first level is the "inner" cluster, which is formed by configuring multiple servant regions (SRs) behind a

controller (CR). A CR and its associated SRs comprise a logical "application server." Each SR is a physically

separate JVM with all the application binaries available for applications deployed to the server. Each SR has its

own worker thread pool, which means if you have 10 worker threads configured for the server, the first servant

region has 10 and the second has 10 more. WLM will automatically restart failed servant regions to protect the

configured minimum SR number, and WLM will distribute work between the SRs. We cover all this in much more

detail in Unit 3 of this workshop. Finally, stateful data may be replicated between the SRs so that a lost SR does

not imply a client having to log back in and re-enter whatever data they'd entered up to the point of SR failure.

The second level is the "outer" cluster, which is what WAS on every platform has the ability to do. This is

duplicated application servers across operating system instances. In a z/OS environment that's typically done by

duplicating servers across logical partitions (LPARs). Each application server will have the application binaries

loaded for applications deployed to the cluster. As with the inner cluster, stateful data replication is possible.

Work distribution to a cluster may be accomplished in a variety of ways, including using z/OS Sysplex Distributor if

you wish.

The objective of application duplication is availability and scalability. And while duplicating application instances is

not the total HA story (which has many layers to it beyond simply duplicating applications), the starting point is

duplication of app instances. WAS z/OS provides two levels of that -- inner and outer as shown.

Note: the terms "inner cluster" and "outer cluster" are informal terms we've adopted for this. You will not find

references in the official documentation for those phrases. But they are useful because they differentiate the two
levels of clustering available with WAS z/OS.

Unit 1 - Overview

Unit 1 - 28

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
28

WLM, SAF, SMF, MODIFY, Cross-Memory
Other points of platform exploitation are those summarized here:

Wrap up …

WLM
z/OS Workload Manager

● Controller / Servant structure as discussed on previous chart
● Request classification for separate service classes and reporting classes

SAF

z/OS Security Access Facility
● Sysplex-aware security definition repository and resource access control
● Userids and passwords, SSL certificates, EJBROLE definitions
● Security workshop covers WAS z/OS security in detail (ask for details if interested)

SMF

z/OS System Management Facilities
● SMF 120.9 record to record detailed information about request activity
● Useful for analysis and chargeback
● See WP102205 at ibm.com/support/techdocs for guide to SMF Techdocs

MODIFY
z/OS MODIFY interface

● Allows dynamic operations against WAS z/OS servers
● Long list of actions to display and act up on server operational behavior

Cross
Memory

z/OS Cross-Memory Exchange
● DB2 Type 2 connector, CICS EXCI, MQ BINDINGS, WOLA
● Low latency, better security

This chart provides a quick summary of the other ways in which WAS z/OS takes advantage of the platform. This

is a fairly high level summary ... a deeper review of the "Why WAS z/OS" question can be found at the Techdoc by

that same name:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532

The green stars indicate topics we'll cover in more detail in this workshop.

Unit 1 - Overview

Unit 1 - 29

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
29

Wrap-Up
Final thoughts before getting to the rest of the workshop

Unit 1 - Overview

Unit 1 - 30

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
30

Version 6.1
● 64-bit JVM

Summary

Version 7.0
● SMF 120.9
● Thread Hang Recovery
● FRCA Caching
● WOLA
● New spec level support

Version 8.0
● Improved JVM
● Alternate JNDI
● HPEL
● Granular RAS
● New spec level support

Version 8.5
● Liberty Profile
● Compute Grid
● Virtual Enterprise
● New spec level support

Now to the

details ...

Version 8.5.5
● Liberty Profile Updates

Techdocs …

This chart provides a very high-level summary of where we've been and what V8.5 brings to the table as part of

that history. Now it's time to get to some details.

Unit 1 - Overview

Unit 1 - 31

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
31

Techdocs
We've published a great deal of useful information out on the Techdocs site. So many
that we decided to publish a "guide" to all the documents ... WP102205

The labs …

ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102205

PDF with hiperlinks to the key
documents for WAS z/OS

PDF with hiperlinks to

important documents not listed
in the "key documents" PDF

John Hutchinson's "Healthy
Runtime" information

We have a lot of Techdocs out there. To help you understand what documents are available, we produced a

guide to the documents ... a kind of "table of contents" to the key documents we've published.

Unit 1 - Overview

Unit 1 - 32

© 2013 IBM Corporation
IBM Americas Advanced Technical Skills

Gaithersburg, MD
32

Few Notes About the Labs

Slow and steady ... lots of information, so trying to
rush usually results in overlooking things

MVS and ISPF usage hints in the back

Cut-and-paste command text file on desktop

A few notes about the upcomings hands-on labs.

End of UnitEnd of Unit

