

© 2012 IBM Corporation© 2012 IBM Corporation

WP101490

WebSphere Optimized Local Adapters for WAS z/OS

Overview and Usage

ibm.com/support/techdocs

2

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

22 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Contents
The flow of this document is organized around the following main topics:

Other WP101490 documents ...

Setting the Stage

Basic Components

Fundamental Concepts

Specific External Address Space Usage
● WOLA and Batch
● WOLA and CICS
● WOLA and IMS

Finer Details

Wrap-Up

This is the flow of the material in this document. It is designed to take you into the topic of WOLA without
overwhelming you with too many details or exceptions at the start. WOLA has a lot of details associated with it,
but underlying those details are some fairly easy-to-follow concepts. That's what we'll do in this presentation,
going from high level to increasingly deeper level.

3

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

33 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Other Sources of Information
From the WP101490 Techdoc:

Setting the stage ...

Technical Brochure
A "glossy brochure" format that gives a high-level of WOLA and answers a
few anticipated questions.

Planning Guide
Providing specific information and InfoCenter pointers based on the type of
WOLA usage you intend.

Native APIs Primer
A guided instructional exploration of the WOLA native APIs with COBOL

On Wikipedia:

http://en.wikipedia.org/wiki/WebSphere_Optimized_Local_Adapters

On YouTube:

http://www.youtube.com/results?search_query=WASOLA1&aq=f

Or search WOLA and "disambiguate"

This presentation is not the only source of information about WOLA. The WP101490 Techdoc, from which this
presentation came, also has two other documents you may find worthwhile.

4

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

44 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Setting the Stage
A little bit of background to the story of WOLA

5

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

55 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

In The Beginning Was "Local Comm"
This has been around since the early days of WAS on z/OS. It's a way to bypass the
TCP/IP stack for internal IIOP calls between servers on the same LPAR:

The initial motivation ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon If an IIOP call is made and WAS
z/OS sees it's on the same
LPAR, then this is automatically
done

The Daemon server plays a key
role in this; it owns the above-
the-bar space used shared
space and does the inter-
address switching

It's very fast with very low
overhead

To better understand what WOLA is we need to step back in time and take a look at a technology that's been used
by WAS z/OS since the very early days of the product. That function is something called "Local Communications,"
or "Local Comm" for short. It is a way for WAS z/OS to recognize that an IIOP call is targeted for an object in the
same z/OS operating system and to use the z/OS cross-memory services rather than invoking the TCP/IP stack to
perform the call.

Note: z/OS also has something called "Fast Local Sockets" for TCP calls within the same z/OS operating system.
That's a way of using only TCP (and not IP) for faster "local" socket calls. But Local Comm is faster still. It does
not use TCP at all.

What the picture above is representing is a somewhat high-level schematic of how Local Comm is implemented.
The Daemon server of WAS z/OS owns a chunk of above the bar shared memory that's used to hold control
blocks used for the cross memory transfer. That shared memory is not in the Daemon address space, it is simply
owned by it.

When an IIOP call is initiated and targeted for an object in the same cell on the same z/OS operating system
instance (we'll use LPAR to mean that from this point forward), the Local Comm function copies t the control block
area the pointer to the memory location. Then it lets the target process know the pointer reference and it
authorizes the fetching of the message from that location. Since it's across address spaces, and z/OS in general
protects at the address space level, something with sufficient authority needs to control that. That something is
the Daemon server, which is why it owns the shared space.

In this picture the thick orange bar represents the cross-memory transfer, with the dotted red line to the shared
space yellow block representing the ownership and control of the Daemon.

Got it? That's Local Comm. And as mentioned, it's been around for a long time.

6

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

66 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The Motivation Behind WOLA
It started out as a way to allow program access into WAS for high transaction rate
batch programs. Other solutions existed, but they all had limitations:

The birth of WOLA ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition
Inbound to WAS?
As more and more solutions are built
based on Java EE, there is a growing
desire to access them by batch, CICS and
IMS programs

MQ or Web Services?
Both are very good technologies and
have their role. But for very high
throughput and low overhead, each has
their drawbacks.

External
Address
Space

External
Address
Space

??

Something else was needed ...
something very fast with as
little overhead per exchange

as possible

What got the developers thinking about something like WOLA? Initially it was a desire to provide a way from
outside WAS in to invoke business logic and services located in WAS z/OS. Particularly batch processes that
need to operate quickly, efficiently and with a minimum of overhead.

There are ways to accomplish this -- MQ, web services -- and those are very good technologies. But each has its
share of overhead and limitations.

The developers got to thinking about this challenge and remembered the Local Comm function inside WAS z/OS.
That was the initial spark ... perhaps they could "piggyback" on Local Comm and provide a way into WAS.

And thus WOLA was born ...

7

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

77 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Answer: Externalize the Local Comm Function
The Local Comm function was there. It just needed interface modules so external
address spaces could access it:

What external address spaces? ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

External
Address
Space

External
Address
Space

WOLA was born
1. Existing Local Comm exploited

2. Externalization routines written

3. Programming APIs for external address
spaces provided

4. Standard JCA adapter for the WAS
server provided

11

22

33

44
Just Inbound? No!

This is a bi-directional
technology. Outside into

WAS, and WAS out to
external address space

What the developers did was externalize the Local Comm function so it was accessible by address spaces outside
the WAS z/OS cell. They did this with four basic components:

1. By using the existing Local Comm ... this is what we spoke of on the previous chart. This is not a reinvention
of the wheel. This is the exploitation of existing function ... extended out.

2. By writing some very low-level externalization modules that lets the Local Comm function know about and
understand there's more to its world than just itself.

3. A set of programming APIs for programs in external address spaces so they could access this Local Comm
infrastructure and target the business logic in WAS z/OS in a systematic and documented way.

4. A standard Java Connector Architecture (JCA) resource adapter that deploys into WAS z/OS so the Java
programs there could have a standard interface -- the Common Client Interface (CCI) -- to interact with.

The developers understood full well that if they stopped with just inbound-to-WAS support the very next question
would be "What about the other direction?" So they kept banging on their keyboards and made this technology bi-
directional; that is, the external program can call into WAS z/OS, and Java programs can call out to external
programs.

External programs where? That's next ...

8

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

88 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

What External Address Spaces Supported?
The picture looks like this ... recently enhanced with IMS in the 7.0.0.12 fixpack:

Let's slow down ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Batch ProgramsBatch Programs

CICS RegionsCICS Regions

IMS RegionsIMS Regions

USS ProcessesUSS Processes

ALCS RegionsALCS Regions

This picture shows a very abstract representation of what we were talking about earlier, expanded to include the
different types of external address space structures WOLA can work with. We'll spend the rest of this presentation
unraveling the details of CICS, IMS and Batch Programs.

Note: the WP101490 Techdoc has a brochure on ALCS if you're interested. ALCS is a high performing
transaction server environment used in the airline and reservations industry. It gets its efficiency by keeping a
clear focus on being a fast transaction processor and not trying to be something for everybody. We won't cover
USS processes in this presentation, but the concepts we'll cover for batch apply to USS as well.

9

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

99 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

We've Only Just Begun ...
The previous pictures set the basic framework in place, but there are many details left
to explore

This is a somewhat abstract picture.

Key concepts are correct but many
details have been omitted

It's important to keep in mind that the
different external address spaces have

different characteristics, and thus
different WOLA considerations

With that, let's start digging under the covers ...

There is likely a strong urge on your part to start asking questions about the specifics of how this works. We will
start to do just that. Please be a bit patient with us ... to tell this story in a systematic way requires a few setup
charts, then we get into the details of each environment.

10

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1010 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The Basic Components
The pieces that make up WOLA and how they fit into the overall picture

11

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1111 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Key Components
The earlier picture gave a hint to some of the components. We'll start to review them a
bit more closely here

Key concepts ...

Proper level of WAS z/OS
● Function made available first in 7.0.0.4
● Recently enhanced to include IMS and other functionality in 7.0.0.12

WOLA support enabled in the WAS z/OS cell
● Shell script to create symlinks to the WOLA files
● Single WAS environment variable to turn function on

WOLA JCA adapter installed in the WAS z/OS nodes
● Simple JCA adapter installation like any other

External WOLA modules copied out to library
● A supplied shell script will do this for you
● This is how you make function available to others

Enablement work done in external address space
● For batch program it's as simple as STEPLIB
● For CICS and IMS there's a few easy Sysprog tasks to do

Sample code used to validate the environment
● Sample EAR file provides the WAS-side code
● Sample COBOL and C/C++ code provides the external

There's very little here that's complex for the Sysprog. Fairly straightforward stuff.
The WAS z/OS InfoCenter has very good documentation on this

This chart is in the deck to give you a sense for the various setup work needed to get this to work. We're not
going to dwell on this things too much because, for the most part, they are fairly straightforward things. The
InfoCenter has very good step-by-step documentation on all this.

What we're going to do is focus on using the functionality once it's been enabled.

12

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1212 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

A Few Fundamental Concepts
These are absolutely essential to understanding the details that follow

13

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1313 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Concept #1 - WOLA is a Byte Array Pipe
As such it pays no attention to format or code page. That's why it's so fast.

Address space to address space ...

WAS z/OS Server External Address Space

Application

WOLA Function

Inter. Function

Application

WOLA Function

Inter. Function

This layer does
not care what the
content is ... it just

passes it over

This layer probably
does care

The two sides of the exchange must have some awareness of each other
so that the data can be in the proper format, layout and codepage

There are Eclipse based wizards to help with COBOL COPYBOOKS for CICS programs
(See the YouTube videos referenced earlier)

This can be XML if you want. Or COBOL COPYBOOK
format. Or whatever. WOLA doesn't care.

The first key concept we wish to establish is that WOLA is itself a very low-level byte array pipe. By that we mean
that the WOLA function itself pays no attention to the contents of what's being passed back and forth. It doesn't
care about data layout and it doesn't care about code pages. It slings byte arrays back and forth very quickly.

But that's not to say that the application layer can ignore those considerations. In fact, very likely they can not
ignore them. So at some point there'll have to be some consideration of these issues at the application layer.

One such case would be CICS programs that work against a COBOL COPYBOOK. There are Rational wizards to
import a COPYBOOK structure and format up the Java-side handling of that. That allows the Java program to
format up the data in such a way the COBOL program in CICS can properly interpret it. (Early on the "Other
Sources of Information" page we referenced a YouTube link ... Jim Mulvey, the lead architect of WOLA, discusses
some of those techniques.)

The point here is that WOLA itself gets a blob of bytes and shuffles them quickly over the WOLA pipe. It does that
very well. And it does that very quickly by not getting involved in parsing and conversions.

You'll notice the little gray box "Inter. Function." By that we mean it's possible to place an intermediary function
between the low-level WOLA structure and the end-using application. We'll see that take shape in the CICS
support in the form of the "Link Server Task." Also, you could code up a simple "bridge EJB" that interfaces with
WOLA and does whatever tweaking necessary before passing the data to your business function program. That's
what we mean by "intermediary function."

14

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1414 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Concept #2 - WOLA is Address Space to Address Space
This is a very low-level mechanism between address spaces:

"Registration" ...

CICS RegionCICS Region
CR

Node Agent

Batch ProgramBatch Program
CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

This picture from earlier
was a bit misleading

This is more technically correct*

* Strictly speaking the connection is
 to the WAS server controller region

To exchange with an application
in a server, it is required to

register to that specific server

WOLA does not provide general
access to the WAS cell, it

provides very low-level access
to the specific server and
applications in that server Multiple registrations permitted, to the

same server or different servers

The second key concept we wish to establish is that WOLA is an address space to address space communication
link. That's where it gets its speed and efficiency: by being a very low-level exchange mechanism and not a
general purpose routing function. Other technologies exist for flexible routing from on platform or off. WOLA is
very definitely meant to be from an external address space to a specific WAS z/OS server.

Note: more specifically, a specific WAS server controller region. Servant regions know nothing of WOLA.

Our preliminary picture seemed to suggest a more generic connectivity. The picture on the right is more precise.
(That reference to "registrations" will be explained in a bit ... the message here is that you're not limited to a single
WOLA pipe. There is in fact considerable flexibility built in.)

The address space to address space structure means the two must be on the same LPAR. WOLA is not a cross-
LPAR technology or a cross-platform technology.

And because it's used for communication with a specific WAS server we have to be careful not to consider it as
providing general reference to the WAS cell.

Now be careful ... once WOLA has passed off the data to a Java program in WAS, that Java program may then
turn and route it to wherever it wants. So in that sense you can use it for the "whole cell." But the WOLA
exchange itself is between the external address space and the WAS CR.

Ditto the external side ... once WOLA passes off to a CICS program it is free to use whatever CICS function it
desires to pass off elsewhere.

15

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1515 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Concept #3 - Registration
Before any external address space may use WOLA, it must first register in:

Inbound vs. Outbound ...

External
Address
Space

External
Address
Space

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

11

33

44

Registration ...
1. Is always initiated by the external

address space into the specific WAS
server
There are different ways to accomplish this as we'll see

2. The cell, node and server short name is
given, along with a registration name
The registration name is what identifies the WOLA transfer
pipe. Since multiple registrations is permitted, this is how
applications designate which pipe to use.

3. The registration control block structure
is built in the Daemon shared space
above the 2GB bar
This is not in the Daemon address space. It is owned by
the Daemon.

4. Connection built and ready to use
Which brings up the inbound/outbound discussion

22

The key here is that the external address space has to request of WAS
z/OS that it allow the access and build the connectivity infrastructure.

Concept #3 is about the very first thing that must be done before any WOLA exchanges can take place ...
something called registration.

Registration is the act of letting the WOLA function know about the desire to establish a connection into the WAS
Local Comm structure. This is what tells the Daemon to establish the control block structure up in the shared
space. It's a very simple process.

Here's the key to understand: registration is always initiated by the external address space into the WAS z/OS
environment. The process involves naming the specific server you want to connect to. That means the WAS
z/OS environment -- the Daemon and the named server -- must be up and running when the registration in is
attempted. If it's not, you'll get a return code and reason code that's very clearly documented in the InfoCenter as
being a problem with the server not being up.

Registration can be done with the programming APIs, which we'll explore in a bit, or it can be done by supplied
WOLA function that gets installed into CICS to support that environment.

You're not limited to a single registration. You may have multiple. The only restriction is they must be uniquely
named. That unique name is used by the Daemon to keep the control block structures separate.

The name is also important because it's the way the programs on either side of the WOLA pipe reference which
pipe to use. Since multiple registrations are possible, it's necessary to tell WOLA which of potentially many you
wish to talk across. Again, this is merely a parameter on the programming interfaces.

16

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1616 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Concept #4 - Inbound vs. Outbound
Assuming registration is in place, then this is all about which side initiates the
conversation between programs:

Java side ...

We think of this from the perspective of WAS z/OS:

Outbound

External
Address
Space

External
Address
Space

CR SR

AppServer

I'll initiate!

I'll reply!

External
Address
Space

External
Address
Space

CR SR

AppServer

I'll reply!

I'll initiate!

Inbound

This is important because many application considerations are a function of this
What APIs, what kind of Java program, security propagation ...

Key Concept #4 is one we wish you to really lock your mind on because when we get to the section on the native
programming APIs this becomes a very helpful distinction. It's the concept of "inbound" vs. "outbound" calls.

The key here is who initiates the first call after registration is in place.

The words "inbound" and "outbound" are used with WAS z/OS as the point of reference:

● Inbound -- the external address space initiates the first call into WAS z/OS after it performs the registration.
The Java program in WAS z/OS responds.

● Outbound -- the Java program in WAS z/OS initiates the first call out to the external address space after the
external has done the registration. The external program responds.

At this point you don't need to worry about why this is an important distinction. Just keep in mind the notion of this
being from the perspective of WAS z/OS, and the key is who initiates after the registration is built.

17

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1717 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Concept #5 - The Java Side of the Application Question
Much of WOLA is hidden by a standard JCA resource adapter. But a few things do
come into play:

External
Address
Space

External
Address
Space

Common Client InterfaceCommon Client Interface

WOLA Native ModulesWOLA Native Modules

WOLA Java ClassesWOLA Java Classes

Servlet or

EJB

Servlet or

EJB EJBEJB

Java Virtual Machine

ProgramProgramOutbound
● Servlet or EJB

● Use standard CCI methods

● Pass in key parameters related to
WOLA (i.e. register name, target
program name)

● WOLA specifics are generally well
hidden from the application

Inbound
● Must be Stateless Session EJB

● Must implement execute() and

executehome() using WOLA

class files

More detail

Not complete transparency, but a
considerable degree of shielding Java
from this very low level interchange

This we'll explore
in more detail next

tdat_useoutboundconnection.html

InfoCenter search string:

tdat_useola_in.html

InfoCenter search string:

The fifth and final key concept has to do with the Java side programming considerations. We're not going to
spend a lot of time on Java coding considerations because the focus of this document is non-Java. Suffice to say
the InfoCenter has some good write-ups on this (see the "search strings" indicated on the chart).

But the key message here is that the low-level specifics of WOLA are well hidden behind standard Java interfaces.
For outbound calls it's the Common Client Interface (CCI), and for inbound calls it's the execute() and
executehome() interfaces implemented with the supplied WOLA class files.

There's not complete transparency, just like there isn't for JDBC or JMS. There has to be some degree of
application layer awareness of WOLA. But on the Java side it's limited to names to use in parameters. The Java
program does not need to write to the APIs we'll be discussing next.

18

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1818 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA and Batch
How it's implemented and how it works

19

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

1919 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Batch Program Access to WOLA Modules
This is easy ... copy the modules out to a module library and make it available to the
batch program -- STEPLIB or LINKLIST

First step, registration ...

Batch
Program

Batch
ProgramCR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

STEPLIB DD DSN=<WOLA module library>

This merely gives your batch program access to the APIs

The next step is to actually use them ...

We start with batch access (rather than CICS or IMS) because it's the most basic and allows us to show WOLA at
its most basic. CICS and IMS have various facilities that WOLA exploits to differing degrees. We'll explore all that
when we get to the sections on CICS and IMS.

For now let's settle our minds on simple batch, and in so doing we can see the bare bones of WOLA usage.

20

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2020 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Registering Into the WAS Server
The first step in any processing ... the external AS always registers in, never the other
way around. From the "Primer" document at WP101490:

BBOA1INV ...

Cell ShortCell Short Node ShortNode Short Server ShortServer Short

Register NameRegister Name RC, RSNRC, RSN

The minconn and maxconn determine the "connections"
within the registration ... don't worry about those right now

The registerflags are not related to batch

Registration is one of the easier APIs to work with. It either works or it does not work,
and if not the RC, RSN in the InfoCenter is really clear about the problem

The author of this presentation loves the InfoCenter's RC, RSN code write-ups ... perfectly clear and easy to understand

Recall that we said that registration is a key first step, and that it's always done by the external address space into
WAS. We also said that registration was specific to a given server in WAS z/OS.

Well, no surprise, for a batch program to perform the registration it needs a programming interface (API), and
that's one of the things supplied with WOLA -- a set of native APIs.

The supported languages are: COBOL, C/C++, PL/I and High Level Assembler.

What you see on this chart is a bitmap clip from the InfoCenter (search: cdat_olaapis) and included in the
WP101490 "Primer" document. It shows the API map -- command and parameters). The point of this chart is to
show that the API for registration is not that complicated, and that the parameters make some sense with respect
to what we've discussed already:

● BBOA1REG is the name of the API used to register. BBOA1URG is used to unregister as we'll see in a bit.

● The first three parameters that are passed in are cell, node and server short name. That's what's needed to
isolate on precisely which address space you wish to connect to with the registration.

● The next is the registration name. As we mentioned before, that's important because the application layer
needs to know which WOLA pipe to talk over. They would use this name.

● The next three -- minconn, maxconn and registerflags -- we'll defer until later.

● Finally rc and rsn are output values. This is what gets returned by WOLA. 0 is good, others may indicate an
issue. The InfoCenter APIs page has a wonderful writeup on RC and RSN values and what they mean.

The "Primer" document walks you through a series of exercises on all the APIs, starting with registration.

21

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2121 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound: Invoking the Target EJB in the WAS Server
The BBOA1INV API is a "basic" API ... very simple to use ... it invokes the named EJB in

the target WAS server:

Looping ...

This API can be looped over and over again within the same registration ...

Registration Name
(set on BBOA1REG API)

Registration Name
(set on BBOA1REG API)

Request Service Name
This is the JNDI name of the home
interface of the target EJB in WAS

Request Service Name
This is the JNDI name of the home
interface of the target EJB in WAS

Return, Reason
Again, InfoCenter has excellent

write-up on these values

Return, Reason
Again, InfoCenter has excellent

write-up on these values

You need to specify the
input and output
pointers and length.

The Primer walks you
through that. It's not
difficult

Value
This is the response back from

the program in WAS z/OS

Value
This is the response back from

the program in WAS z/OS

Keep an eye on this notion of the response
being the return on the call. Later we'll show

how you can operate asynchronously.

Now we start to see where the "inbound" and "outbound" concepts come into play. It turns out the APIs tend to
organize around inbound and outbound. This API -- BBOA1INV -- is an inbound API. It is used to "invoke" the
target EJB in the server.

Let's quickly walk through the API:

● BBOA1INV is the name of the API used to register.

● The first parameter is the registration name. The batch program just performed that on the previous chart.
That name can be maintained in a variable and used for this API. That's exactly what the Primer document
shows.

● The second parameter (requesttype) is always "1" for EJB. The InfoCenter says that.

● The next parameter -- requestservicename -- names the target of the invocation into WAS z/OS. The value
you put there is the JNDI name of the EJB you wish to invoke. Think about that for a moment. Within the
Java EE environment objects are known by their JNDI names. Here -- from a batch program -- you are
naming the target with a JNDI name. That means that somewhere the WOLA function turns the WOLA call
into an IIOP call to invoke the target. That done by the supplied ola.rar resource adapter. Again, shielding the
Java application from the details of WOLA.

● The next few parameters are used to indicate the storage location and length of the message. You can
programmatically derive this values and plug them into the API use. The Primer shows this as well.

● Return, Reason and Value -- these are output values. The InfoCenter has a nice writeup for the RC and
RSN. The rv output value is the response back from the EJB. Stop and think about that for a moment ... that
means this API -- BBOA1INV -- must wait for the Java program to return the repsonse. It does. That means
this API operates synchronously. But not all do ... later we'll see examples of "advanced" APIs that offer you
the chance to operate asynchronously for even better performance.

22

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2222 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound: BBOA1REG, Loop BBOA1INV, BBOA1URG
That's the most simple programming structure:

API map ...

BBOA1REG
Register into WAS Address Space

BBOA1REG
Register into WAS Address Space

BBOA1URG
Unregister from the Address Space

BBOA1URG
Unregister from the Address Space

BBOA1INV
Send request in, get response back

BBOA1INV
Send request in, get response back

More?More?

StartStart

EndEnd

Yes

No

A registration may be used over and
over again before tearing it down

Loop as many times as you need for
the program requirements

The BBOA1INV is making some
assumptions to keep things simple

● Synchronous ... wait until response received
● Get connection, use, tear down connection
● (This is where "advanced" APIs come in)

When done, tear down registration

Simple, easy, effective for
inbound exchanges

Batch processing is often about performing again and again the same action against different sets of data. And
that's exactly what we see possible with WOLA -- your program can loop repeatedly.

Note that the registration does not have to be built each time. Build it once, use it many times, and when you're
through with it, tear it down.

The BBOA1INV API is an example of a "basic" API ... one that is fairly simple to use. To accomplish that the
developers of WOLA made some assumptions about the behavior of the API. One such behavior is something we
just touched on in the previous chart ... this API is synchronous, which means it waits on the Java side to respond
before returning program control to your batch application. This may be exactly what you want to do. It certainly
makes things simple. But if the Java-side has longer or more variable delays, you may want to consider operating
asynchronously, which means program control returns immediately.

"Ah!" You think. "That means my program would have to come back and get the response at some future point in
time, right?" And you'd be right. The "advanced" APIs have the capability to do that. It requires more
programming on your part, but it provides enhanced performance in return.

23

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2323 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

A Map of the APIs
This sets the stage for the discussion of the APIs

Outbound from WAS ...

BBOA1REG

BBOA1URG

BBOA1INV

BBOA1CNG

BBOA1CNR

BBOA1GET

BBOA1SRQ

BBOA1RCL

BBOA1RCA BBOA1RCS

BBOA1CNG

BBOA1SRX

BBOA1SRV

BBOA1SRP

BBOA1CNR

BBOA1CNRBBOA1GET

Basic

Advanced

Basic

Advanced

Inbound Outbound
Simple or more
complex,
depending on
needs

Green stars show
what we
illustrated on
previous chart

Possible to shield
CICS and IMS
programs from all
of this

Primer document
walks you
through simple
exercises of all
these APIs

Here we see the complete list of APIs, organized around the "inbound," "outbound," "basic" and "advanced"
concepts. The registration and unregistration APIs fall outside those classifications because, well, they are what
they are they don't really apply to inbound or outbound, and their neither basic or advanced. They simply are.

We just looked at BBOA1INV. We saw that with that one API you can invoke the Java-side program over and over
again.

So programming does not need to be complex. It can be very simple, as a matter of fact.

And we've yet to discuss CICS and IMS, which both have mechanisms to shield the programs from interaction
with WOLA APIs. We'll see that in the upcoming sections.

24

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2424 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Outbound Gets a Bit More Complex with Batch
The reason why is the batch program has to set in a "listen state" for the call from WAS:

CICS support ...

Outbound

External
Address
Space

External
Address
Space

CR SR

AppServer

I'll initiate!

I'll reply!

I'm ready for
your call

Register

Unregister

Host a Service
This is what puts the batch
program in a "listen state"

Send a Response
When request comes from
Java side this API is used
to send a response back

Release Connection
Releases the connection
handle secured by
BBOA1SRV

Outbound to batch not that
common a thing for initial usage of
WOLA. We showed you this to help

understand the division of APIs
around "inbound" and "outbound"

What about outbound calls from WAS z/OS to the batch program? The registration, as we noted, is always done
by the external program. So that part is easy to understand. Must the batch program always be the one to initiate
after registration?

There is a way to put the batch program into a "I'm listening and ready for your call, WAS, whenever you're ready
to send it" state. That's done with the BBOA1SRV API, which "hosts a service." When WAS calls out to this
hosted service, the batch program may then send a response with BBOA1SRP. The BBOA1CNR API is used to
release the connection taken from the connection pool by the BBOA1SRV API.

(Is there a way to re-use a connection over and over again? Yes. Again, advanced APIs.)

Outbound to batch is possible, but not likely to be that common. Outbound to CICS or IMS is another matter. So
now we turn our attention to CICS, and see how things are implemented there.

25

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2525 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA and CICS
How it's implemented and how it works

26

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2626 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

High Level Overview of CICS Support
The following picture illustrates the pieces:

Link Server Task ...

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

DFHRPL DD DSN=<WOLA module library>

WOLA Task Related
User Exit (TRUE)

WOLA Link
Server Task

BBOC control
transaction

CICS
Programs

CICS

TRUE -- the low-level heart of the WOLA support in CICS

Link Server Task -- a way of shielding CICS programs from the APIs and knowledge of WOLA

BBOC -- a useful command line transaction to start and stop various pieces of WOLA

Region

Installation of each is standard CICS system programmer stuff ... very easy

This picture provides a very high level view of the components that make up the WOLA support in CICS. We'll drill
into more detail over the next few pages.

The WAS-side components are the same regardless of the external address space. Batch or CICS or IMS or
ALCS ... it's always the same setup requirements inside of WAS z/OS.

There's three pieces to the puzzle here:

● The Task Related User Exit (TRUE) -- this is what provides the low-level module support for access to the
Local Comm function of WAS z/OS. It is required in all cases. CICS can't use WOLA without it. And this has
to be installed in any CICS region that wishes to use WOLA.

● The Link Server Task is what can be used to shield the CICS programs from the specifics of WOLA. It
serves as a kind of "WOLA handler" which then turns and uses EXEC CICS LINK (DPL) of the named target
CICS program. The Link Server Task is for outbound calls. Inbound calls, as well see, requires some coding
to the APIs.

● The BBOC control transaction is something provided to make managing the environment easier.

This is all very straight-forward installation work. So again, setting it up is not the issue. Using it is the objective.

27

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2727 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Link Server Task
The piece that allows you to shield CICS programs from knowldge of WOLA. It applies
to outbound calls ...

The BBOC transaction ...

TRUE

CICS
Program

CICS
Region

BBO$ Link
Server Task

WOLA APIs used
inside the task

BBO#

Invocation
Task

An instance of the
invocation task is created

Call from WAS
comes into the TRUE

Link server task
handles the call

Invocation task turns and invokes
named CICS program with EXEC

CICS LINK, passing COMMAREA or
channel/container

The target CICS program has no awareness of WOLA. It sees that another program
invoked it using standard CICS routines. The BBO$ / BBO# activity is automatic.

The program's response is returned to WAS automatically as well.

There are details and optional changes to behavior we're not showing you here. The key concept is
that there is a way to shield CICS programs and the Link Server Task provides it for outbound calls.

The developers of WOLA understood that any solution that required updating and recompiling the program code
would face resistance in the market. Further, they understood that many CICS programs are written to be invoked
using the CICS Direct Program Link (DPL) facility. There is a long-established means of passing data
(COMMAREA). So the developers decided to provide a shielding function called the Link Server Task that would
drive CICS programs with a DPL, leaving the invoked CICS program no more the wiser that WOLA was involved.

And that's what the Link Server Task does -- it accepts outbound calls from WAS into CICS, then turns and issues
EXEC CICS LINK against the named CICS program, passing either COMMAREA or Channel/Container.

One other piece of this puzzle is the Invocation Task ... this is spawned to actually do the EXEC CICS LINK. The
reason why this is separate from the BBO$ link server task is if specific security identities are required on the DPL
to the target CICS program, then a separate invocation task for each is used. If your security requirements
indicate invoking with the same ID then you can use specify the re-use of the invocation task.

There's always a tradeoff on these sorts of things -- flexibility and easy of use vs. efficiency and speed.

The Link Server Task also plays a role in the new 7.0.0.12 support for two phase commit processing outbound
from WAS to CICS. So if 2PC out to CICS is needed, then the link server task is indicated.

28

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2828 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The 3270 BBOC Transaction
This provides the tools to do many things with the WOLA support in CICS:

CICS inbound ...

TRUE
Related

Link Server
Related

Registration
Related

InfoCenter search string: rdat_cics

BBOC START_TRUE <parms>
BBOC STOP_TRUE <parms>

You may automate this
by including the TRUE in
the Program List Table
Post-Initialization (PLTPI)

BBOC START_SRVR <parms>
BBOC STOP_SRVR <parms>

Parameters include
ability to process
registration on link
server task start, set
security and transaction
flags and other options

If you don't use the link
server task you do not
need to start the link
server

BBOC REGISTER <parms>
BBOC UNREGISTER <parms>

Provides a way to
process a registration
into WAS z/OS outside
the program itself.

Or use BBOA1REG in the

program

Or use the link server
task which can also
process registration

Point here is not the details of this, but rather what BBOC offers

The 3270 BBOC control transaction is supplied with the WOLA CICS support and does a few handy things for you.
 All of these things can be done using other mechanisms, so the BBOC transaction isn't strictly required to
operate. But it is handy. The chart spells out the uses of the transaction.

29

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

2929 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

When the CICS Program Initiates an Inbound Call
The Link Server Task does not come into play. Therefore, at least some coding to the
WOLA APIs is necessary. But here you can provide some shielding ...

Transaction and Security ...

TRUE

CICS
Region

Call into WAS
through the TRUE

CICS Program

WOLA inbound
APIs similar to

Batch

Your
business
logic

CICS Program

Your
business
logic

Custom Bridge

WOLA inbound
APIs similar to

Batch
DPL

Embedded API Usage
● API's in the compiled program

● Normal WOLA Inbound APIs

● Can offload register/unregister to
manual BBOC if you wish

Custom Bridge Program
● Modular design ... isolate WOLA from business

logic

● Multiple programs could use DPL to drive WOLA

● Bridge code then uses APIs

Let's turn our attention to inbound calls. Like batch, this is going to involve some degree of coding to the APIs.
The Link Server Task does not asist in calls inbound to WAS. The TRUE is still needed (always needed), but the
Link Server Task does not play a role.

Note: again, responses to calls outbound from WAS where the link server task is involved is a different matter.
The link server task in that case does process the response and pass it back to WAS. What we're talking about
here is, again, the initiation of the exchange.

Some coding to the APIs is needed. But where in the architecture will that reside?

There are two broad approaches:

● Embed the WOLA API processing in the CICS program itself. This is easy enough to do if you're writing a
new application, or can easily modify an existing one. But it's a bit more problematic for existing programs
where the mandate is to leave it untouched for modifications.

● The second option is to write a kind of custom WOLA bridge program this is DPL-able by your programs. In
this sense it becomes a kind of "WOLA Service" to existing CICS programs to utilize as your needs require.

30

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3030 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA and CICS, Transaction and Security
A summary picture:

IMS ...

See the WP101490 "Design and Planning Guide or the
InfoCenter for the specific details of this

WAS z/OS CICSTransaction = 2PC
Requires WAS 7.0.0.12 or higher and CICS 4.1 or higher

Security = ID on WAS thread

Transaction = 2PC
Available since original 7.0.0.4

Security = Region ID or
Application User ID

Outbound

Inbound

New!

WOLA
Link
Server

WOLA
Link
Server

Transaction = None

Security = No ID Propagation
WOLA
APIs

WOLA
APIs

WOLA
APIs

WOLA
APIs

Bypass Link
Server for
maximum
performance

This chart is summarizing the transaction and security support offered with WOLA and CICS. The InfoCenter has
significant detail around all the information provided on this chart. But in summary:

● For outbound where the Link Server Task is used, assuming you're at the 7.0.0.12 level or higher and CICS
4.1 or higher, then you can have CICS participate in a WAS-initiated global transaction with two phase
commit. Prior to 7.0.0.12 the support from WAS into CICS was limited to SyncOnReturn. That's been
addressed with WAS 7.0.0.12 and CICS 4.1.

● For outbound where the Link Server Task is used, you can assert the identity of the WAS thread of execution
into CICS and have that ID be used for the EXEC CICS LINK to the named CICS program. For maximum
performance you can forego asserting the WAS thread ID into CICS and have the ID used to start the Link
Server task used each time.

● For outbound without the Link Server Task there is no assertion of identity nor any assertion of transactional
context. This is just like it is with batch.

● For inbound to WAS you can have WAS participate in a CICS global transaction with full two phase commit
support.

● Inbound may also assert the CICS region ID or the application user ID.

31

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3131 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA and IMS
How it's implemented and how it works

New!
7.0.0.12

32

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3232 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

High Level Overview of IMS Support
New with 7.0.0.12, the following picture illustrates the pieces:

OTMA ...

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Controlling
Region

Dependent Region
Message
Processing

Program (MPP)

Dependent Region
IMS Fast Path

(IFP)

Dependent Region
Batch Message
Processing

program (BMP)

E
x
te

rn
a

l S
u

b
s

y
s
te

m
 A

tta
c
h

 F
a

c
ility

(E
S

A
F

)

WOLA over OTMA

WOLA

Shielded

Write to the
WOLA APIs

and /
or

Batch Controller
Batch DL/I Apps

and /
or

Write to the
WOLA APIs

No WOLA
enablement needed

This is a somewhat busy chart, and we'll break this down into the simpler components in the following charts.
What this chart is trying to do is capture on a single page the various options for WOLA support with IMS.

Like CICS, the IMS support provides a way to shield the IMS programs from having to code to or otherwise know
about the WOLA APIs. That's the "WOLA over OTMA" section. OTMA is an IMS architectural component that
allows access to the IMS controlling region over the Sysplex XCF facility. Once over the OTMA interface line it's
all IMS from there. No changes to anything needed.

It is possible to use WOLA to talk directly to programs in the dependent regions. For inbound to WAS this is
viewed by IMS as an ESAF call, and the WOLA APIs have been modified to do this automatically. You still have to
write to the APIs to perform the call inbound to WAS. But you don't have to worry about the ESAF elements of this
as it's part of the WOLA IMS support structure.

Outbound from WAS to IMS dependent region programs involves coding to the APIs. We'll touch on that in a few
charts.

Finally, you can use WOLA to talk to Batch DL/I applications. This is essentially just like other batch so we won't
dwell on this much.

33

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3333 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The OTMA Support
To use the OTMA support it's important to be using the latest ola.rar file:

Inbound ESAF ...

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Controlling
Region

Dependent Region
Message
Processing

Program (MPP)

Dependent Region
IMS Fast Path

(IFP)

Dependent Region
Batch Message
Processing

program (BMP)

ola.rar
delivered with 7.0.0.12 or higher

O
T

M
A

 C
I

setOTMAServerName() XCF Server name for IMS control region

setOTMAGroupID() XCF Group name for IMS control region

setOTMASyncLevel() To set SyncOnReturn or SyncLevel1 (CM0 or CM1)

No changes
needed to IMS

No changes to
applications in IMS

Provides a way to
propagate
minimum sync
level in

Provides a way to
propagate WAS
thread ID into IMS

Not a replacement
for IMS Connect
It's complementary

OTMA is a call interface on the IMS controlling region and is accessible by other address spaces. It provides a
programming interface to programs and transactions running inside IMS. Access to the OTMA call interface is
across cross coupling facility (XCF).

The WOLA developers implemented this by extending the WOLA JCA resource adapter and lower-level WOLA
code to access XCF and be able to address itself to the OTMA CI. No changes are needed in IMS to make use of
this facility. That's what provides the shielding of applications from WOLA by the use of this feature.

It is important to use the RAR file delivered with 7.0.0.12 rather than an earlier copy. The 7.0.0.12 RAR file
provides the methods to access the OTMA interface and specify the sync level desired. Once into the IMS CR it's
all IMS from there.

This provides a way to assert the WAS thread identity into the IMS region over WOLA. That's one of the
differential functions of this over IMS Connect. We would caution that no reader conclude this is a replacement for
IMS Connect. IMS Connect offers many other functional components above and beyond simple access. They are
complementary technologies, not competing.

34

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3434 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound Using WOLA APIs and ESAF
They're the same API names and syntax, but they've been updated to recognize they're
operating in IMS and use ESAF:

Outbound WOLA ...

IMS Proclib

External
Subsystem
Member

WOLA,BBOA,BBOAIEMT

WOLA Modules

InfoCenter: tdat_enableconnectorims

STEPLIB DD
DFSESL DD

Control Region Procs

Dependent Region Procs

STEPLIB DD

APF

Sysprog Work

Dependent Region
Message
Processing

Program (MPP)

Dependent Region
IMS Fast Path

(IFP)

Dependent Region
Batch Message
Processing

program (BMP)

E
x
te

rn
a

l S
u

b
s

y
s
te

m
 A

tta
c
h

 F
a

c
ility

(E
S

A
F

)

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Key Points:

● No new APIs "just for IMS" ... same APIs as before

● Same usage and syntax

● If IMS, make sure 7.0.0.12 or higher used so
modules will know they're in IMS and use ESAF

If you wish to access an application in WAS by going inbound with a call from IMS you would write to the WOLA
APIs. These APIs, in turn, use the IMS External Subsystem Attach Facility (ESAF) function to communicate to the
external subsystem. That "external subsystem" is WOLA. The system programmer work we show on the chart
gives a hint to the relatively simple setup that's required to let IMS know about the WOLA external subsystem so
the APIs work and talk to WAS over WOLA.

The key here is that there's no new "IMS only" APIs. The exact same APIs we showed you earlier apply to IMS as
well. But ... it is important to make sure you use the 7.0.0.12 level or higher of the WOLA native modules when
you do that sysprog work. That's the level that has the updated API modules so they recognize they're operating in
IMS and use ESAF. Earlier levels of the modules will be simply confused. ☺

No new APIs to learn, no new concepts. WOLA is WOLA when it comes to the API syntax and usage.

35

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3535 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Outbound Using WOLA APIs (No OTMA ... "WOLA both Sides")
This provides the maximum efficiency, but there are some considerations:

Transaction and security ...

CR

Node Agent

CR SR

DMGR

CR

Daemon

CR SR

AppServer

2GB Bar

Exchange
Control Blocks

Owned by Daemon Dependent Region
Message
Processing

Program (MPP)

WOLA
Host Service

APIs

WOLA
Host Service

APIs

Dependent Region
Batch Message
Processing

program (BMP)

WOLA
Host Service

APIs

WOLA
Host Service

APIs

Dependent Region
IMS Fast Path

(IFP)

WOLA
Host Service

APIs

WOLA
Host Service

APIs

Batch Controller
Batch DL/I Apps

WOLA
Host Service

APIs

WOLA
Host Service

APIs

For performance reasons we
recommend you use the

"asynchronous" capability of
these APIs.

We'll explore that in the last
section of this presentation

We recommend asynch
option on APIs to
prevent the execution
thread from being
blocked.

For IFP/BMP this may be
intentional and
acceptable since these
are single purpose
dependent regions.

For MPPs, running in
message processing
regions, using the
blocking versions of
these APIs will tie up a
critical thread in the
MPR. That may prevent
other transactions from
being serviced.

We saw that outbound WAS to IMS can be done using the OTMA call interface. That works, but it won't be as fast
as having the programs in the IMS dependent regions "host a service" using the WOLA APIs.

But ... do be careful. We recommend you investigate and learn the use of the asynchronous options on those
APIs. The "basic" APIs assume synchronous control, which means the hosting IMS program thread has to wait
between calls from WAS. That may be what you want, but it may not.

In particular, be careful of Message Processing Program regions and synchronous calls. There's a possibility of
that resulting in the exhaustion of execution threads and no further transaction requests coming in.

The asynchronous API options are not difficult, but they do impose a bit more programming effort on you for the
IMS side. Squeezing high efficiency out of IMS applications has been the standard practice for a long time now,
so the concepts should not be foreign at all.

We cover asynchronous API structures in the latter part of this presentation. And the Primer document on
WP101490 does as well.

36

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3636 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA and IMS, Transaction and Security
A summary picture:

Advanced considerations ...

The transactional propagation issue is on the list of enhancements for the future.

See InfoCenter for details about security assertion requirements
Setup very similar to those required for traditional batch

WAS z/OS IMSTransaction = 2PC with 8.0.0.5

Security = ID on WAS thread

Transaction = 2PC with 8.0.0.4

Security = ID on IMS thread

Outbound

Inbound

Transaction = None

Security = No ID propagation
WOLA
APIs

WOLA
APIs

OTMAOTMA

IMS
ESAF

IMS
ESAF

WOLA
APIs

WOLA
APIs

Bypass OTMA
for maximum
performance

MPP and IFP, but not BMP

This is a chart similar to the one we offered for CICS, showing a summary of the security and transaction support
offered for various combinations of things. Again, the InfoCenter has good detail behind all this.

For outbound to IMS over OTMA, the transaction level is SyncLevel None or Confirm, and the security context
may be the ID on the WAS thread of execution. As the green bar on the chart shows, the transactional support
offered is on the list of known requirements.

2PC when IMS asserts transaction into WAS from IMS Dependent Region applications was addressed with WAS
z/OS 8.0.04. 2PC WAS into IMS over OTMA was made available with 8.0.0.5.

37

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3737 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Finer Details
Drilling down into the next level of detail

38

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3838 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound / Outbound
● Key is who initiates exchange

● Various things available to shield
external from outbound APIs

 CICS link server task
 IMS OTMA

● Those shielding mechanisms imply
some overhead; using the APIs can
reduce that

Basic / Advanced
● One set is simple to use but it

makes assumptions to keep things
simple

● The other set is a bit more complex
but it gives you far greater control,
which can translate to greater
performance

Reminder of the API Map Shown Earlier
We'll now discuss the Inbound/Outbound and Basic/Primitive issue a bit more ...

Basic vs. Primitive ...

This chart is just to remind you of the API map we showed earlier. In that map we broke down the APIs into four
categories -- inbound vs. outbound, and basic vs. primitive.

We spoke at length about the nature of "inbound" and "outbound" and how that plays heavily into which APIs are
used. And we saw that for CICS and IMS there are means of shielding programs from the outbound calls.

Those shielding mechanisms do imply a level of overhead. So there's a set of APIs to "host a service". But even
those make certain assumptions that migh affect throughput. So WOLA offers "advanced" (or "primitive") APIs,
which give you maximum control to tweak every bit of performance you can out of the exchange mechanism.

39

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

3939 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

"Basic" vs. "Primitive" APIs
Let's explore the BBOA1INV API and see that it's really comprised of primitives:

Synchronous vs. Asynchronous ...

WOLA External ASWAS Server WOLA External ASWAS Server

Get Connection

Send Request

Get Response

Release Connection

"Basic" "Advanced"
(or "primitives")

Exact same
function

Okay ... but what's the value?

Finer control allows you to do finer things:
● BBOA1SRQ allows for synchronous or asynchronous

● Get a connection and re-use it many times

● Get a pool of connections and multi-thread over it These sorts of things get to the
question of performance ...

We'll use the BBOA1INV API to explain something about how these APIs work. We'll use the term "primitives"
here rather than advanced because the InfoCenter tends to use "primitives" more frequently. In a sense it's a
better term because it describes more accurately the relationship between them and the easier-to-use "basic"
APIs.

You see, the "basic" APIs are really comprised of primitive APIs under the covers. Or, another way to put it is the
basic APIs are simpler wrappers around the primitives. But to do this it's necessary to make some assumptions
about the behavior of the basic That's how you make it simpler. By providing access to the primitives that
comprise the basic you the user has access to the finer-grained control you may desire.

Take as an example the BBOA1INV API. The assumptions it makes is that when invoked the program will wait
until WAS responds. That's what makes BBOA1INV synchronous. Further, it assumes that the connection from
the connection pool used for the invocation is returned to the pool. That's simpler but there's a bit of processing
underutilized by doing that. Better to hold the connection and use it over and over again.

Asynchronous operations and direct connection handling are attributes of the primitive APIs. And they make up
the basic APIs.

40

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4040 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Synchronous vs. Asynchronous
The APIs allow both. In general, synchronous is simpler. But asynchronous allows for
potentially greater throughput:

Connections ...

Synchronous Asynchronous

WOLA

WAS External

1

2

3

1. External program calls WAS program

2. WAS program processes request. Program control is
held from external processing thread until request
returns.

3. WAS program responds

WOLA

WAS External

1

2 3

4

1. External program calls WAS program. Program control is
returned to external thread immediately.

2. WAS program processes request.

3. External program free to do other work or employ other
WOLA connections (more on connections next chart)

4. WAS program responds at some future point.

The "basic" APIs operate synchronously. It's a simpler model.

The "advanced" APIs (sometimes called "primitives") are finer-grained subsets of the
basics which allow asynchronous activity. But that implies your program goes back

at some point and checks to see if a response has been received.

We've touched on the concept of synchronous vs. asynchronous earlier. He we illustrate it. It's all about whether
the program control is returned to the program immediately (asynchronous) or held under a response is received
(synchronous). Synchronous processing is easier; asynchronous has the potential for better performance.

The thing about programming using the asynchronous capabilities is that your program has to keep track of
connection handles and to return to them and check for output. A bit more work on your part, but it allows the
program to go "do other work" while waiting on a response.

41

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4141 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Connections within the Registration Pool
Two of the parameters on the BBOA1REG registration API determine the minimum and

maximum connections provided in the registration:

Host a Service APIs ...InfoCenter search string: cdat_olaapis

Cell, node and server SHORT

The name on this registration
(multiple registrations, same cell or

even same server, permitted)

Security propagation,
transactionality and tracing

(See InfoCenter)minconn = 1

maxconn = 5

allocated = 3

in-use = 1

Registration Control Block

WOLA

WAS
Batch
or CICS
or IMS

● minconn is the number of connections allocated at registration

● maxconn is the limit of allocations on this registration

● in this example 3 connections have been allocated

● one connection is currently in use

● two connections are allocated and available

● two more could be allocated if needed

● RC=8, RSN=10 if maximum connections occupied

One of the parameters on the BBOA1REG API for registration was minconn and maxconn. Those set the
minimum connections and maximum connections permitted across that particular registration.

The temptation is to think that "more is better," but that's not always the case. There are other limiting settings in
the WAS environment. And there's no purpose in allocating a pile of connections if your program doesn't make
use of them. There is a set of MODIFY DISPLAY commands that may be used to display the connection statistics
for a registration.

The point of this chart is to let you know there is a "connection pool" at work, and the min and max is set at
registration time. If you're using asynchronous features of the APIs, these connections have connection handles,
and the advanced APIs have parameters to specify a given connection using its handle to pull messages back.
This is what we meant earlier by having to "keep track" of things in your program.

42

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4242 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Host a Service ... Establishing "I'm Listening" State
In order for an outbound call to work, the external address space has to put itself in a
state where it can accept the call. That's called "hosting a service."

WOLA Performance ...

BBOA1RCA BBOA1RCS

BBOA1CNG

BBOA1SRX

BBOA1SRV

BBOA1SRP

BBOA1CNR

BBOA1CNRBBOA1GET

Basic

Advanced

Outbound APIs

"Host a Service"
BBOA1SRV is a "basic" API. It ...

 Gets a connection from connection pool
 Puts program in listen state
 Holds program control until request received

"Send Response"
BBOA1SRP is used to respond back when the call

comes from WAS

"Release Connection"
BBOA1CNR is used to release a connection. Since

the basic API BBOA1SRV gets a connection each

time, this is how you release it

Advanced APIs allow you operate
asynchronous, maintain multiple connections,

and multi-thread over them as needed

CICS Link Server Task was doing this
under the covers, which is how it shields

your CICS programs from the APIs

This chart shows the outbound APIs broken down by basic and advanced. Unlike inbound where a single API was
sufficient, to "host a service" requires at minimum three (not including the registration and unregistration).

When the BBOA1SRV API is used it carries with it a name. This is what your Java program would specify on the
setServiceName() method. Once BBOA1SRV is invoked, it waits for something in WAS to invoke it. With
BBOA1SRV that operates synchronously, which means that thread is tied up until something comes in.

The advanced APIs provide an asynchronous variant of this -- BBOA1RCA or BBOA1RCS. Those "host a service"
and return the thread back to your program. But then you have to come back with BBOA1GET to see if something
has arrived. Greater control; greater performance.

43

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4343 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA Performance ... Heavily Generalized
Two key conceptual points to be made:

Summary ...

Greater Performance:
● Multi-threaded
● Concurrent multi-connections
● Tune user threads to connections
● Hold and re-use connections
● Asynchronous
● Large messages
● No security propagation
● No transactional propagation
● If outbound CICS, bypass CICS

link server task

Lesser Performance:
● Single thread
● Synchronous
● Small, chatty messages
● Security checking
● Transactional
● CICS Link Server Task

WOLA

WAS CICS

Small number
of users

HTTP or Web
Services

High in-CICS
processing time

Finer Control = Performance
(if done properly)

Utilize Full Capacity

Here's an example of under-utilizing WOLA:

A user in this example may not see much benefit
from WOLA vs. another connector technology.

But that's because the WOLA-time is such a very
small percentage of total time.

The greater the utilization of WOLA capacity, the
greater the relative benefit you'll see.

InfoCenter search string: cdat_perfconsid
Also WP101490 Techdoc

Trade-off between simplicity and ease of
use and performance through more

sophisticated usage of programming

2 secs

Now we get to the end of our presentation, and we offer a few comments about maximizing WOLA performance.
This is a heavily generalized chart. The InfoCenter has more details.

The left-hand side of this chart is saying that there's a tradeoff between simplicity and performance. Simplicity
comes by having WOLA functions make assumptions and remove from you the effort to do lower-level mundane
things. As you desire to squeeze more and more performance out of a system, you start to take on more
responsibility for coding (this is the asynchronous consideration), holding and re-using threads, bypassing the Link
Server Task (or OTMA), and minimizing security checking, and having multiple threads of activity going at once.

The right had part of this chart is saying that you really see the benefits of WOLA when WOLA has a chance to run
at near full capacity. By that we mean this -- we've seen several cases where someone does a single invocation
test of, say, Web Services vs. WOLA. The stopwatch doesn't show much delta between those two for the single
invocation. In both cases the utilization is negligible and it's hard to measure the differences.

Another case we've seen is where the time spent in the backend (CICS, or IMS, or batch or whatever) is relatively
high while the transport time between WAS and that backend is relatively low. In that case the WOLA pipe
remains relatively underutilized and the round-trip time is comprised mostly of the backend processing. If the
throughput is gated by the limitation of the backend, then WOLA itself won't show much delta over other
mechanisms.

For best results, use the pipe to the max.

44

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4444 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Overall Summary
Wrapping up

45

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4545 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Overall Summary

Functionality
● Cross-memory single-LPAR byte area low-overhead exchange mechanism
● Inbound and outbound; CICS, IMS, Batch, USS and ALCS

Applicability
● Very well suited for inbound to WAS where other solutions may impose unacceptable overhead
● Excellent solution for high-speed batch interchanges

Programming
● Non-Java side: C/C++, COBOL, High-Level Assembler, PL/I
● Native APIs used as illustrated earlier and in WP101490 Techdoc
● Java side: code to CCI methods of supplied JCA adapter

Security
● Security propagation inbound and outbound is possible, depending on the case (see summaries)
● Region ID or Thread ID, inbound/outbound with CICS
● Thread ID in and out for IMS

Transaction
● Two-phase commit inbound and outbound WAS/CICS using RRS as syncpoint coordinator

Performance
● "Out of the box" basics provides very good performance
● Potential exists to tune even further using programming primitives as illustrated earlier
● WOLA will show greater and greater relative performance to other technologies the more you utilize the

capacity of the WOLA connections

Our final chart summarizes the discussion.

46

WP101490 - Overview and Usage

© IBM Corporation 2010
Version Date: 11/12/12
WP101490 at ibm.com/support/techdocs

4646 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Document Change History

September 12, 2010 Original document

September 11, 2012 Updated the IMS section to reflect TX assertion IMS into WAS

November 12, 2012 Updated the IMS section to reflect TX assertion WAS into IMS over OTMA.

End of Document

